jak-project/game/system/IOP_Kernel.cpp
2022-12-22 18:12:59 -05:00

405 lines
9.1 KiB
C++

#include "IOP_Kernel.h"
#include <cstring>
#include "common/util/Assert.h"
#include "common/util/FileUtil.h"
#include "game/sce/iop.h"
using namespace std::chrono;
/*
** wrap thread entry points to ensure they don't return into libco
*/
static void (*thread_entry)() = nullptr;
static cothread_t wrap_return;
void IopThread::functionWrapper() {
void (*f)() = thread_entry;
co_switch(wrap_return);
if (f != nullptr) {
f();
}
// libco threads must not return
while (true) {
iop::ExitThread();
}
}
/*
** -----------------------------------------------------------------------------
** Functions callable by threads
** -----------------------------------------------------------------------------
*/
/*!
* Create a new thread. Will not run the thread.
*/
s32 IOP_Kernel::CreateThread(std::string name, void (*func)(), u32 priority) {
u32 ID = (u32)_nextThID++;
ASSERT(ID == threads.size());
// add entry
threads.emplace_back(name, func, ID, priority);
// enter the function wrapper so it can put the actual thread enry on its stack
// to call it when the thread is eventually started
thread_entry = func;
wrap_return = co_active();
co_switch(threads.at(ID).thread);
return ID;
}
/*!
* Start a thread. Marking it to run on each dispatch of the IOP kernel.
*/
void IOP_Kernel::StartThread(s32 id) {
threads.at(id).state = IopThread::State::Ready;
}
s32 IOP_Kernel::ExitThread() {
ASSERT(_currentThread);
_currentThread->state = IopThread::State::Dormant;
return 0;
}
/*!
* Put a thread in Wait state for desired amount of usecs.
*/
void IOP_Kernel::DelayThread(u32 usec) {
ASSERT(_currentThread);
_currentThread->state = IopThread::State::Wait;
_currentThread->waitType = IopThread::Wait::Delay;
_currentThread->resumeTime =
time_point_cast<microseconds>(steady_clock::now()) + microseconds(usec);
leaveThread();
}
/*!
* Sleep a thread. Must be explicitly woken up.
*/
void IOP_Kernel::SleepThread() {
ASSERT(_currentThread);
_currentThread->state = IopThread::State::Suspend;
leaveThread();
}
/*!
* Wake up a thread. Doesn't run it immediately though.
*/
void IOP_Kernel::WakeupThread(s32 id) {
ASSERT(id > 0);
threads.at(id).state = IopThread::State::Ready;
}
s32 IOP_Kernel::WaitSema(s32 id) {
auto& sema = semas.at(id);
if (sema.count > 0) {
sema.count--;
return KE_OK;
}
sema.wait_list.push_back(_currentThread);
_currentThread->state = IopThread::State::Wait;
_currentThread->waitType = IopThread::Wait::Semaphore;
leaveThread();
return KE_OK;
}
s32 IOP_Kernel::SignalSema(s32 id) {
auto& sema = semas.at(id);
if (sema.count >= sema.maxCount) {
return KE_SEMA_OVF;
}
if (sema.wait_list.empty()) {
sema.count++;
return KE_OK;
}
IopThread* to_run = nullptr;
if (sema.attr == Semaphore::attribute::fifo) {
to_run = sema.wait_list.front();
sema.wait_list.pop_front();
} else {
auto it =
std::max_element(sema.wait_list.begin(), sema.wait_list.end(),
[](IopThread*& a, IopThread*& b) { return a->priority < b->priority; });
to_run = *it;
sema.wait_list.erase(it);
}
to_run->waitType = IopThread::Wait::None;
to_run->state = IopThread::State::Ready;
return KE_OK;
}
s32 IOP_Kernel::PollSema(s32 id) {
auto& sema = semas.at(id);
if (sema.count > 0) {
sema.count--;
ASSERT(sema.count >= 0);
return KE_OK;
}
return KE_SEMA_ZERO;
}
/*!
* Return to kernel from a thread, not to be called from the kernel thread.
*/
void IOP_Kernel::leaveThread() {
IopThread* oldThread = _currentThread;
co_switch(kernel_thread);
// check kernel resumed us correctly
ASSERT(_currentThread == oldThread);
}
/*
** -----------------------------------------------------------------------------
** Kernel functions.
** -----------------------------------------------------------------------------
*/
/*!
* Run a thread (call from kernel)
*/
void IOP_Kernel::runThread(IopThread* thread) {
ASSERT(_currentThread == nullptr); // should run in the kernel thread
_currentThread = thread;
thread->state = IopThread::State::Run;
co_switch(thread->thread);
_currentThread = nullptr;
}
/*!
** Update wait states for delayed threads
*/
void IOP_Kernel::updateDelay() {
for (auto& t : threads) {
if (t.waitType == IopThread::Wait::Delay) {
if (steady_clock::now() > t.resumeTime) {
t.waitType = IopThread::Wait::None;
t.state = IopThread::State::Ready;
}
}
}
}
time_stamp IOP_Kernel::nextWakeup() {
time_stamp lowest = time_point_cast<microseconds>(steady_clock::now()) + microseconds(1000);
for (auto& t : threads) {
if (t.waitType == IopThread::Wait::Delay) {
if (t.resumeTime < lowest) {
lowest = t.resumeTime;
}
}
}
return lowest;
}
/*!
** Get next thread to run.
** i.e. Highest prio in ready state.
*/
IopThread* IOP_Kernel::schedNext() {
IopThread* highest_prio = nullptr;
for (auto& t : threads) {
if (t.state == IopThread::State::Ready) {
if (highest_prio == nullptr) {
highest_prio = &t;
}
// Lower number = higher priority
if (t.priority < highest_prio->priority) {
highest_prio = &t;
}
}
}
return highest_prio;
};
void IOP_Kernel::processWakeups() {
std::scoped_lock lock(wakeup_mtx);
while (!wakeup_queue.empty()) {
WakeupThread(wakeup_queue.front());
wakeup_queue.pop();
}
}
/*!
* Run the next IOP thread.
*/
time_stamp IOP_Kernel::dispatch() {
// Check vblank interrupt
if (vblank_handler != nullptr && vblank_recieved) {
vblank_handler(nullptr);
vblank_recieved = false;
}
// Update thread states
updateDelay();
processWakeups();
// Run until all threads are idle
IopThread* next = schedNext();
while (next != nullptr) {
// printf("[IOP Kernel] Dispatch %s (%d)\n", next->name.c_str(), next->thID);
runThread(next);
updateDelay();
next = schedNext();
// printf("[IOP Kernel] back to kernel!\n");
}
// printf("[IOP Kernel] No runnable threads\n");
return nextWakeup();
}
void IOP_Kernel::set_rpc_queue(iop::sceSifQueueData* qd, u32 thread) {
sif_mtx.lock();
for (const auto& r : sif_records) {
ASSERT(!(r.qd == qd || r.thread_to_wake == thread));
}
SifRecord rec;
rec.thread_to_wake = thread;
rec.qd = qd;
sif_records.push_back(rec);
sif_mtx.unlock();
}
typedef void* (*sif_rpc_handler)(unsigned int, void*, int);
bool IOP_Kernel::sif_busy(u32 id) {
sif_mtx.lock();
bool rv = false;
bool found = false;
for (auto& r : sif_records) {
if (r.qd->serve_data->command == id) {
rv = !r.cmd.finished;
found = true;
break;
}
}
ASSERT(found);
sif_mtx.unlock();
return rv;
}
void IOP_Kernel::sif_rpc(s32 rpcChannel,
u32 fno,
bool async,
void* sendBuff,
s32 sendSize,
void* recvBuff,
s32 recvSize) {
ASSERT(async);
sif_mtx.lock();
// step 1 - find entry
SifRecord* rec = nullptr;
for (auto& e : sif_records) {
if (e.qd->serve_data->command == (u32)rpcChannel) {
rec = &e;
}
}
if (!rec) {
printf("Failed to find handler for sif channel 0x%x\n", rpcChannel);
}
ASSERT(rec);
// step 2 - check entry is safe to give command to
ASSERT(rec->cmd.finished && rec->cmd.started);
// step 3 - memcpy!
memcpy(rec->qd->serve_data->buff, sendBuff, sendSize);
// step 4 - setup command
rec->cmd.buff = rec->qd->serve_data->buff;
rec->cmd.size = sendSize;
rec->cmd.fno = fno;
rec->cmd.copy_back_buff = recvBuff;
rec->cmd.copy_back_size = recvSize;
rec->cmd.started = false;
rec->cmd.finished = false;
{
std::scoped_lock lock(wakeup_mtx);
wakeup_queue.push(rec->thread_to_wake);
}
sif_mtx.unlock();
}
void IOP_Kernel::rpc_loop(iop::sceSifQueueData* qd) {
while (true) {
bool got_cmd = false;
SifRpcCommand cmd;
sif_rpc_handler func = nullptr;
// get command and mark it as started if we get it
sif_mtx.lock();
for (auto& r : sif_records) {
if (r.qd == qd) {
cmd = r.cmd;
got_cmd = true;
r.cmd.started = true;
func = r.qd->serve_data->func;
}
}
sif_mtx.unlock();
// handle command
if (got_cmd) {
if (!cmd.started) {
// cf
ASSERT(func);
auto data = func(cmd.fno, cmd.buff, cmd.size);
if (cmd.copy_back_buff && cmd.copy_back_size) {
memcpy(cmd.copy_back_buff, data, cmd.copy_back_size);
}
sif_mtx.lock();
for (auto& r : sif_records) {
if (r.qd == qd) {
ASSERT(r.cmd.started);
r.cmd.finished = true;
}
}
sif_mtx.unlock();
}
}
SleepThread();
}
}
void IOP_Kernel::read_disc_sectors(u32 sector, u32 sectors, void* buffer) {
if (!iso_disc_file) {
iso_disc_file = file_util::open_file("./disc.iso", "rb");
}
ASSERT(iso_disc_file);
if (fseek(iso_disc_file, sector * 0x800, SEEK_SET)) {
ASSERT(false);
}
auto rv = fread(buffer, sectors * 0x800, 1, iso_disc_file);
ASSERT(rv == 1);
}
IOP_Kernel::~IOP_Kernel() {
if (iso_disc_file) {
fclose(iso_disc_file);
}
}