jak-project/decompiler/IR2/IR2_common.h
water111 403bb5f4de
[decomp] game-info (#779)
* support more process stuff

* more of game info

* add ref file

* progress on save
2021-08-22 20:12:47 -04:00

294 lines
7.9 KiB
C++

#pragma once
#include <unordered_set>
#include "common/common_types.h"
#include "common/goos/Object.h"
#include "decompiler/Disasm/Register.h"
#include "decompiler/util/TP_Type.h"
#include "third-party/fmt/core.h"
#include "decompiler/Function/Warnings.h"
namespace decompiler {
enum class AccessMode : u8 {
READ, // represents value of the variable/register at the beginning of the instruction
WRITE // represents value of the variable/register at the end of the instruction
};
/*!
* A register plus an integer ID.
*/
struct RegId {
RegId() = default;
RegId(Register _reg, int _id) : reg(_reg), id(_id) {}
Register reg;
int id = -1;
struct hash {
auto operator()(const RegId& x) const {
return Register::hash()(x.reg) ^ std::hash<int>()(x.id);
}
};
bool operator==(const RegId& other) const { return reg == other.reg && id == other.id; }
bool operator!=(const RegId& other) const { return !((*this) == other); }
bool operator<(const RegId& other) const {
if (reg == other.reg) {
return id < other.id;
} else {
return reg < other.reg;
}
}
std::string print() const { return fmt::format("{}-{}", reg.to_charp(), id); }
};
class Env;
/*!
* A "RegisterAccess" represents a register at a given instruction index.
* The register can either be a GOAL local variable or a GOAL register used in inline assembly.
* Because OpenGOAL's registers don't one-to-one map to GOAL registers, GOAL "inline assembly
* registers" will become OpenGOAL variables, and are treated similarly to variables in
* decompilation.
*
* In the earlier parts of decompilation, this just behaves like a register in all cases.
* But in later parts registers can be mapped to real local variables with types. A variable can
* look itself up in an environment to determine what "local variable" it is.
*
* Note: a variable is _not_ allowed to be R0, AT, S7, K0, K1, FP, or RA by default, as these
* can never hold normal GOAL locals. Inline assembly may use these, but you must set the allow_all
* flag to true in the constructor of Variable to indicate this is what you really want.
*
* Note: access to the process pointer (s6) is handled as a variable. As a result, you may always
* use s6 as a variable.
*/
class RegisterAccess {
public:
RegisterAccess() = default;
RegisterAccess(AccessMode mode, Register reg, int atomic_idx, bool allow_all = false);
enum class Print {
AS_REG, // print as a PS2 register name
FULL, // print as a register name, plus an index, plus read or write
AS_VARIABLE, // print local variable name, error if impossible
AS_VARIABLE_NO_CAST, // same as above, but no cast
AUTOMATIC, // print as variable, but if that's not possible print as reg.
};
goos::Object to_form(const Env& env, Print mode = Print::AUTOMATIC) const;
std::string to_string(const Env& env, Print mode = Print::AUTOMATIC) const;
bool operator==(const RegisterAccess& other) const;
bool operator!=(const RegisterAccess& other) const;
const Register& reg() const { return m_reg; }
AccessMode mode() const { return m_mode; }
int idx() const { return m_atomic_idx; }
struct hash {
auto operator()(const RegisterAccess& x) const {
return (Register::hash()(x.m_reg) << 2) ^ (int(x.m_mode) << 1) ^ x.m_atomic_idx;
}
};
private:
AccessMode m_mode = AccessMode::READ; // do we represent a read or a write?
Register m_reg; // the EE register
int m_atomic_idx = -1; // the index in the function's list of AtomicOps
};
using RegAccessSet = std::unordered_set<RegisterAccess, RegisterAccess::hash>;
template <typename T>
using RegAccessMap = std::unordered_map<RegisterAccess, T, RegisterAccess::hash>;
enum class FixedOperatorKind {
GPR_TO_FPR,
DIVISION,
ADDITION,
ADDITION_PTR,
ADDITION_IN_PLACE,
ADDITION_PTR_IN_PLACE,
SUBTRACTION,
SUBTRACTION_PTR,
MULTIPLICATION,
SQRT,
ARITH_SHIFT,
MOD,
ABS,
MIN,
MAX,
FABS,
FMIN,
FMAX,
LOGAND,
LOGAND_IN_PLACE,
LOGIOR,
LOGIOR_IN_PLACE,
LOGXOR,
LOGNOR,
LOGNOT,
LOGCLEAR,
LOGCLEAR_IN_PLACE,
LOGTEST,
LOGTESTA,
SHL,
SHR,
SAR,
CAR,
CDR,
NEW,
OBJECT_NEW,
TYPE_NEW,
LT,
GT,
LEQ,
GEQ,
EQ,
NEQ,
CONS,
METHOD_OF_OBJECT,
METHOD_OF_TYPE,
NULLP,
PAIRP,
NONE,
PCPYLD,
SYMBOL_TO_STRING,
ADDRESS_OF,
ASM_SLLV_R0,
ASM_MADDS,
VECTOR_PLUS,
VECTOR_MINUS,
VECTOR_CROSS,
VECTOR_FLOAT_PRODUCT,
L32_NOT_FALSE_CBOOL,
VECTOR_3_DOT,
PROCESS_TO_PPOINTER,
PPOINTER_TO_HANDLE,
PROCESS_TO_HANDLE,
PPOINTER_TO_PROCESS,
INVALID
};
// for the use of a variable
struct AccessRecord {
int op_id = -1;
int block_id = -1;
AccessMode mode = AccessMode::WRITE;
bool disabled = false;
};
struct UseDefInfo {
std::vector<AccessRecord> uses;
std::vector<AccessRecord> defs;
void disable_use(int op_id) {
for (auto& x : uses) {
if (x.op_id == op_id) {
if (x.disabled) {
throw std::runtime_error("Invalid disable use twice");
}
x.disabled = true;
return;
}
}
throw std::runtime_error("Invalid disable use");
}
void disable_def(int op_id, DecompWarnings& warnings) {
for (auto& x : defs) {
if (x.op_id == op_id) {
if (x.disabled) {
warnings.general_warning(
"disable def twice: {}. This may happen when a cond (no else) is nested inside of "
"another conditional, but it should be rare.",
x.op_id);
}
x.disabled = true;
return;
}
}
throw std::runtime_error("Invalid disable def");
}
int use_count() const {
int count = 0;
for (auto& x : uses) {
if (!x.disabled) {
count++;
}
}
return count;
}
int def_count() const {
int count = 0;
for (auto& x : defs) {
if (!x.disabled) {
count++;
}
}
return count;
}
std::unordered_set<int> ssa_vars;
};
struct VariableNames {
struct VarInfo {
VarInfo() = default;
std::string name() const { return fmt::format("{}-{}", reg_id.reg.to_charp(), reg_id.id); }
TP_Type type;
RegId reg_id;
bool initialized = false;
};
// todo - this is kind of gross.
// program var to info
std::unordered_map<Register, std::vector<VariableNames::VarInfo>, Register::hash> read_vars,
write_vars;
// access to program var.
std::unordered_map<Register, std::vector<int>, Register::hash> read_opid_to_varid,
write_opid_to_varid;
std::unordered_set<int> eliminated_move_op_ids;
std::unordered_map<RegId, UseDefInfo, RegId::hash> use_def_info;
void disable_use(const RegisterAccess& access) {
assert(access.mode() == AccessMode::READ);
auto var_id = read_opid_to_varid.at(access.reg()).at(access.idx());
use_def_info.at(RegId(access.reg(), var_id)).disable_use(access.idx());
}
void disable_def(const RegisterAccess& access, DecompWarnings& warnings) {
assert(access.mode() == AccessMode::WRITE);
auto var_id = write_opid_to_varid.at(access.reg()).at(access.idx());
use_def_info.at(RegId(access.reg(), var_id)).disable_def(access.idx(), warnings);
}
const VarInfo& lookup(Register reg, int op_id, AccessMode mode) const {
if (mode == AccessMode::READ) {
return read_vars.at(reg).at(read_opid_to_varid.at(reg).at(op_id));
} else {
return write_vars.at(reg).at(write_opid_to_varid.at(reg).at(op_id));
}
}
};
struct SetVarInfo {
// is this a compiler-inserted move at the beginning of a function
// that should be eliminated?
bool is_eliminated_coloring_move = false;
// is this a (set! var expr) which consumes the reg for expr,
// and var is written and unused?
bool is_dead_set = false;
// is this a (set! var #f) where the value of #f isn't used?
bool is_dead_false = false;
// it this a move that can be compacted? For now, this is always false, but we may want to
// allow more advanced compaction later.
bool is_compactable = false;
};
} // namespace decompiler