// Copyright 2020 Junekey Jeon // // The contents of this file may be used under the terms of // the Apache License v2.0 with LLVM Exceptions. // // (See accompanying file LICENSE-Apache or copy at // https://llvm.org/foundation/relicensing/LICENSE.txt) // // Alternatively, the contents of this file may be used under the terms of // the Boost Software License, Version 1.0. // (See accompanying file LICENSE-Boost or copy at // https://www.boost.org/LICENSE_1_0.txt) // // Unless required by applicable law or agreed to in writing, this software // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. #ifndef JKJ_DRAGONBOX #define JKJ_DRAGONBOX #include #include #include #include #include // Suppress additional buffer overrun check // I have no idea why MSVC thinks some functions here are vulnerable to the buffer overrun attacks // No, they aren't. #if defined(__GNUC__) || defined(__clang__) #define JKJ_SAFEBUFFERS #define JKJ_FORCEINLINE inline __attribute__((always_inline)) #elif defined(_MSC_VER) #define JKJ_SAFEBUFFERS __declspec(safebuffers) #define JKJ_FORCEINLINE __forceinline #else #define JKJ_SAFEBUFFERS #define JKJ_FORCEINLINE inline #endif #if defined(_MSC_VER) #include #endif namespace jkj::dragonbox { namespace detail { template constexpr std::size_t physical_bits = sizeof(T) * std::numeric_limits::digits; template constexpr std::size_t value_bits = std::numeric_limits, T>>::digits; } enum class ieee754_format { binary32, binary64 }; template struct ieee754_format_info; template <> struct ieee754_format_info { static constexpr auto format = ieee754_format::binary32; static constexpr int significand_bits = 23; static constexpr int exponent_bits = 8; static constexpr int min_exponent = -126; static constexpr int max_exponent = 127; static constexpr int exponent_bias = -127; static constexpr int decimal_digits = 9; }; template <> struct ieee754_format_info { static constexpr auto format = ieee754_format::binary64; static constexpr int significand_bits = 52; static constexpr int exponent_bits = 11; static constexpr int min_exponent = -1022; static constexpr int max_exponent = 1023; static constexpr int exponent_bias = -1023; static constexpr int decimal_digits = 17; }; // To reduce boilerplates template struct default_ieee754_traits { static_assert(detail::physical_bits == 32 || detail::physical_bits == 64); using type = T; static constexpr ieee754_format format = detail::physical_bits == 32 ? ieee754_format::binary32 : ieee754_format::binary64; using carrier_uint = std::conditional_t< detail::physical_bits == 32, std::uint32_t, std::uint64_t>; static_assert(sizeof(carrier_uint) == sizeof(T)); static constexpr int carrier_bits = int(detail::physical_bits); static T carrier_to_float(carrier_uint u) noexcept { T x; std::memcpy(&x, &u, sizeof(carrier_uint)); return x; } static carrier_uint float_to_carrier(T x) noexcept { carrier_uint u; std::memcpy(&u, &x, sizeof(carrier_uint)); return u; } static constexpr unsigned int extract_exponent_bits(carrier_uint u) noexcept { constexpr int significand_bits = ieee754_format_info::significand_bits; constexpr int exponent_bits = ieee754_format_info::exponent_bits; static_assert(detail::value_bits > exponent_bits); constexpr auto exponent_bits_mask = (unsigned int)(((unsigned int)(1) << exponent_bits) - 1); return (unsigned int)((u >> significand_bits) & exponent_bits_mask); } static constexpr carrier_uint extract_significand_bits(carrier_uint u) noexcept { constexpr int significand_bits = ieee754_format_info::significand_bits; constexpr auto significand_bits_mask = carrier_uint((carrier_uint(1) << significand_bits) - 1); return carrier_uint(u & significand_bits_mask); } // Allows positive zero and positive NaN's, but not allow negative zero static constexpr bool is_positive(carrier_uint u) noexcept { return (u >> (carrier_bits - 1)) == 0; } // Allows negative zero and negative NaN's, but not allow positive zero static constexpr bool is_negative(carrier_uint u) noexcept { return (u >> (carrier_bits - 1)) != 0; } static constexpr int exponent_bias = 1 - (1 << (carrier_bits - ieee754_format_info::significand_bits - 2)); static constexpr bool is_finite(carrier_uint u) noexcept { constexpr int significand_bits = ieee754_format_info::significand_bits; constexpr int exponent_bits = ieee754_format_info::exponent_bits; constexpr auto exponent_bits_mask = carrier_uint(((carrier_uint(1) << exponent_bits) - 1) << significand_bits); return (u & exponent_bits_mask) != exponent_bits_mask; } static constexpr bool is_nonzero(carrier_uint u) noexcept { return (u << 1) != 0; } // Allows positive and negative zeros static constexpr bool is_subnormal(carrier_uint u) noexcept { constexpr int significand_bits = ieee754_format_info::significand_bits; constexpr int exponent_bits = ieee754_format_info::exponent_bits; constexpr auto exponent_bits_mask = carrier_uint(((carrier_uint(1) << exponent_bits) - 1) << significand_bits); return (u & exponent_bits_mask) == 0; } static constexpr bool is_positive_infinity(carrier_uint u) noexcept { constexpr int significand_bits = ieee754_format_info::significand_bits; constexpr int exponent_bits = ieee754_format_info::exponent_bits; constexpr auto positive_infinity = carrier_uint((carrier_uint(1) << exponent_bits) - 1) << significand_bits; return u == positive_infinity; } static constexpr bool is_negative_infinity(carrier_uint u) noexcept { constexpr int significand_bits = ieee754_format_info::significand_bits; constexpr int exponent_bits = ieee754_format_info::exponent_bits; constexpr auto negative_infinity = (carrier_uint((carrier_uint(1) << exponent_bits) - 1) << significand_bits) | (carrier_uint(1) << (carrier_bits - 1)); return u == negative_infinity; } static constexpr bool is_infinity(carrier_uint u) noexcept { return is_positive_infinity(u) || is_negative_infinity(u); } static constexpr bool is_nan(carrier_uint u) noexcept { return !is_finite(u) && (extract_significand_bits(u) != 0); } }; // Speciailze this class template for possible extensions template struct ieee754_traits : default_ieee754_traits { // I don't know if there is a truly reliable way of detecting // IEEE-754 binary32/binary64 formats; I just did my best here static_assert(std::numeric_limits::is_iec559 && std::numeric_limits::radix == 2 && (detail::physical_bits == 32 || detail::physical_bits == 64), "default_ieee754_traits only worsk for 32-bits or 64-bits types " "supporting binary32 or binary64 formats!"); }; // Convenient wrapper for ieee754_traits // In order to reduce the argument passing overhead, // this class should be as simple as possible // (e.g., no inheritance, no private non-static data member, etc.; // this is an unfortunate fact about x64 calling convention) template struct ieee754_bits { using carrier_uint = typename ieee754_traits::carrier_uint; carrier_uint u; ieee754_bits() = default; constexpr explicit ieee754_bits(carrier_uint bit_pattern) noexcept : u{ bit_pattern } {} constexpr explicit ieee754_bits(T float_value) noexcept : u{ ieee754_traits::float_to_carrier(float_value) } {} constexpr T to_float() const noexcept { return ieee754_traits::carrier_to_float(u); } constexpr carrier_uint extract_significand_bits() const noexcept { return ieee754_traits::extract_significand_bits(u); } constexpr unsigned int extract_exponent_bits() const noexcept { return ieee754_traits::extract_exponent_bits(u); } constexpr carrier_uint binary_significand() const noexcept { using format_info = ieee754_format_info::format>; auto s = extract_significand_bits(); if (extract_exponent_bits() == 0) { return s; } else { return s | (carrier_uint(1) << format_info::significand_bits); } } constexpr int binary_exponent() const noexcept { using format_info = ieee754_format_info::format>; auto e = extract_exponent_bits(); if (e == 0) { return format_info::min_exponent; } else { return e + format_info::exponent_bias; } } constexpr bool is_finite() const noexcept { return ieee754_traits::is_finite(u); } constexpr bool is_nonzero() const noexcept { return ieee754_traits::is_nonzero(u); } // Allows positive and negative zeros constexpr bool is_subnormal() const noexcept { return ieee754_traits::is_subnormal(u); } // Allows positive zero and positive NaN's, but not allow negative zero constexpr bool is_positive() const noexcept { return ieee754_traits::is_positive(u); } // Allows negative zero and negative NaN's, but not allow positive zero constexpr bool is_negative() const noexcept { return ieee754_traits::is_negative(u); } constexpr bool is_positive_infinity() const noexcept { return ieee754_traits::is_positive_infinity(u); } constexpr bool is_negative_infinity() const noexcept { return ieee754_traits::is_negative_infinity(u); } // Allows both plus and minus infinities constexpr bool is_infinity() const noexcept { return ieee754_traits::is_infinity(u); } constexpr bool is_nan() const noexcept { return ieee754_traits::is_nan(u); } }; namespace detail { //////////////////////////////////////////////////////////////////////////////////////// // Bit operation intrinsics //////////////////////////////////////////////////////////////////////////////////////// namespace bits { template inline int countr_zero(UInt n) noexcept { static_assert(std::is_unsigned_v && value_bits <= 64); #if defined(__GNUC__) || defined(__clang__) #define JKJ_HAS_COUNTR_ZERO_INTRINSIC 1 if constexpr (std::is_same_v) { return __builtin_ctzl(n); } else if constexpr (std::is_same_v) { return __builtin_ctzll(n); } else { static_assert(sizeof(UInt) <= sizeof(unsigned int)); return __builtin_ctz((unsigned int)n); } #elif defined(_MSC_VER) #define JKJ_HAS_COUNTR_ZERO_INTRINSIC 1 if constexpr (std::is_same_v) { #if defined(_M_X64) return int(_tzcnt_u64(n)); #else return ((unsigned int)(n) == 0) ? (32 + (_tzcnt_u32((unsigned int)(n >> 32)))) : (_tzcnt_u32((unsigned int)n)); #endif } else { static_assert(sizeof(UInt) <= sizeof(unsigned int)); return int(_tzcnt_u32((unsigned int)n)); } #else #define JKJ_HAS_COUNTR_ZERO_INTRINSIC 0 int count; auto n32 = std::uint32_t(n); if constexpr (value_bits > 32) { if (n32 != 0) { count = 31; } else { n32 = std::uint32_t(n >> 32); if constexpr (value_bits == 64) { if (n32 != 0) { count = 63; } else { return 64; } } else { count = value_bits; } } } else { if constexpr (value_bits == 32) { if (n32 != 0) { count = 31; } else { return 32; } } else { count = value_bits; } } n32 &= (0 - n32); if constexpr (value_bits > 16) { if ((n32 & 0x0000ffff) != 0) count -= 16; } if constexpr (value_bits > 8) { if ((n32 & 0x00ff00ff) != 0) count -= 8; } if ((n32 & 0x0f0f0f0f) != 0) count -= 4; if ((n32 & 0x33333333) != 0) count -= 2; if ((n32 & 0x55555555) != 0) count -= 1; return count; #endif } } //////////////////////////////////////////////////////////////////////////////////////// // Utilities for wide unsigned integer arithmetic //////////////////////////////////////////////////////////////////////////////////////// namespace wuint { struct uint128 { uint128() = default; #if defined(__SIZEOF_INT128__) unsigned __int128 internal_; constexpr uint128(std::uint64_t high, std::uint64_t low) noexcept : internal_{ ((unsigned __int128)low) | (((unsigned __int128)high) << 64) } {} constexpr uint128(unsigned __int128 u) noexcept : internal_{ u } {} constexpr std::uint64_t high() const noexcept { return std::uint64_t(internal_ >> 64); } constexpr std::uint64_t low() const noexcept { return std::uint64_t(internal_); } uint128& operator+=(std::uint64_t n) & noexcept { internal_ += n; return *this; } #else std::uint64_t high_; std::uint64_t low_; constexpr uint128(std::uint64_t high, std::uint64_t low) noexcept : high_{ high }, low_{ low } {} constexpr std::uint64_t high() const noexcept { return high_; } constexpr std::uint64_t low() const noexcept { return low_; } uint128& operator+=(std::uint64_t n) & noexcept { #if defined(_MSC_VER) && defined(_M_X64) auto carry = _addcarry_u64(0, low_, n, &low_); _addcarry_u64(carry, high_, 0, &high_); return *this; #else auto sum = low_ + n; high_ += (sum < low_ ? 1 : 0); low_ = sum; return *this; #endif } #endif }; static inline std::uint64_t umul64(std::uint32_t x, std::uint32_t y) noexcept { #if defined(_MSC_VER) && defined(_M_IX86) return __emulu(x, y); #else return x * std::uint64_t(y); #endif } // Get 128-bit result of multiplication of two 64-bit unsigned integers JKJ_SAFEBUFFERS inline uint128 umul128(std::uint64_t x, std::uint64_t y) noexcept { #if defined(__SIZEOF_INT128__) return (unsigned __int128)(x) * (unsigned __int128)(y); #elif defined(_MSC_VER) && defined(_M_X64) uint128 result; result.low_ = _umul128(x, y, &result.high_); return result; #else auto a = std::uint32_t(x >> 32); auto b = std::uint32_t(x); auto c = std::uint32_t(y >> 32); auto d = std::uint32_t(y); auto ac = umul64(a, c); auto bc = umul64(b, c); auto ad = umul64(a, d); auto bd = umul64(b, d); auto intermediate = (bd >> 32) + std::uint32_t(ad) + std::uint32_t(bc); return{ ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32), (intermediate << 32) + std::uint32_t(bd) }; #endif } JKJ_SAFEBUFFERS inline std::uint64_t umul128_upper64(std::uint64_t x, std::uint64_t y) noexcept { #if defined(__SIZEOF_INT128__) auto p = (unsigned __int128)(x) * (unsigned __int128)(y); return std::uint64_t(p >> 64); #elif defined(_MSC_VER) && defined(_M_X64) return __umulh(x, y); #else auto a = std::uint32_t(x >> 32); auto b = std::uint32_t(x); auto c = std::uint32_t(y >> 32); auto d = std::uint32_t(y); auto ac = umul64(a, c); auto bc = umul64(b, c); auto ad = umul64(a, d); auto bd = umul64(b, d); auto intermediate = (bd >> 32) + std::uint32_t(ad) + std::uint32_t(bc); return ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32); #endif } // Get upper 64-bits of multiplication of a 64-bit unsigned integer and a 128-bit unsigned integer JKJ_SAFEBUFFERS inline std::uint64_t umul192_upper64(std::uint64_t x, uint128 y) noexcept { auto g0 = umul128(x, y.high()); g0 += umul128_upper64(x, y.low()); return g0.high(); } // Get upper 32-bits of multiplication of a 32-bit unsigned integer and a 64-bit unsigned integer inline std::uint32_t umul96_upper32(std::uint32_t x, std::uint64_t y) noexcept { #if defined(__SIZEOF_INT128__) || (defined(_MSC_VER) && defined(_M_X64)) return std::uint32_t(umul128_upper64(x, y)); #else //std::uint32_t a = 0; auto b = x; auto c = std::uint32_t(y >> 32); auto d = std::uint32_t(y); //std::uint64_t ac = 0; auto bc = umul64(b, c); //std::uint64_t ad = 0; auto bd = umul64(b, d); auto intermediate = (bd >> 32) + bc; return std::uint32_t(intermediate >> 32); #endif } // Get middle 64-bits of multiplication of a 64-bit unsigned integer and a 128-bit unsigned integer JKJ_SAFEBUFFERS inline std::uint64_t umul192_middle64(std::uint64_t x, uint128 y) noexcept { auto g01 = x * y.high(); auto g10 = umul128_upper64(x, y.low()); return g01 + g10; } // Get middle 32-bits of multiplication of a 32-bit unsigned integer and a 64-bit unsigned integer inline std::uint64_t umul96_lower64(std::uint32_t x, std::uint64_t y) noexcept { return x * y; } } template constexpr Int compute_power(Int a) noexcept { static_assert(k >= 0); Int p = 1; for (int i = 0; i < k; ++i) { p *= a; } return p; } template constexpr int count_factors(UInt n) noexcept { static_assert(a > 1); int c = 0; while (n % a == 0) { n /= a; ++c; } return c; } //////////////////////////////////////////////////////////////////////////////////////// // Utilities for fast/constexpr log computation //////////////////////////////////////////////////////////////////////////////////////// namespace log { constexpr std::int32_t floor_shift( std::uint32_t integer_part, std::uint64_t fractional_digits, std::size_t shift_amount) noexcept { assert(shift_amount < 32); // Ensure no overflow assert(shift_amount == 0 || integer_part < (std::uint32_t(1) << (32 - shift_amount))); return shift_amount == 0 ? std::int32_t(integer_part) : std::int32_t( (integer_part << shift_amount) | (fractional_digits >> (64 - shift_amount))); } // Compute floor(e * c - s) template < std::uint32_t c_integer_part, std::uint64_t c_fractional_digits, std::size_t shift_amount, std::int32_t max_exponent, std::uint32_t s_integer_part = 0, std::uint64_t s_fractional_digits = 0 > constexpr int compute(int e) noexcept { assert(e <= max_exponent && e >= -max_exponent); constexpr auto c = floor_shift(c_integer_part, c_fractional_digits, shift_amount); constexpr auto s = floor_shift(s_integer_part, s_fractional_digits, shift_amount); return int((std::int32_t(e) * c - s) >> shift_amount); } inline constexpr std::uint64_t log10_2_fractional_digits{ 0x4d10'4d42'7de7'fbcc }; inline constexpr std::uint64_t log10_4_over_3_fractional_digits{ 0x1ffb'fc2b'bc78'0375 }; inline constexpr std::size_t floor_log10_pow2_shift_amount = 22; inline constexpr int floor_log10_pow2_input_limit = 1700; inline constexpr int floor_log10_pow2_minus_log10_4_over_3_input_limit = 1700; inline constexpr std::uint64_t log2_10_fractional_digits{ 0x5269'e12f'346e'2bf9 }; inline constexpr std::size_t floor_log2_pow10_shift_amount = 19; inline constexpr int floor_log2_pow10_input_limit = 1233; inline constexpr std::uint64_t log5_2_fractional_digits{ 0x6e40'd1a4'143d'cb94 }; inline constexpr std::uint64_t log5_3_fractional_digits{ 0xaebf'4791'5d44'3b24 }; inline constexpr std::size_t floor_log5_pow2_shift_amount = 20; inline constexpr int floor_log5_pow2_input_limit = 1492; inline constexpr int floor_log5_pow2_minus_log5_3_input_limit = 2427; // For constexpr computation // Returns -1 when n = 0 template constexpr int floor_log2(UInt n) noexcept { int count = -1; while (n != 0) { ++count; n >>= 1; } return count; } constexpr int floor_log10_pow2(int e) noexcept { using namespace log; return compute< 0, log10_2_fractional_digits, floor_log10_pow2_shift_amount, floor_log10_pow2_input_limit>(e); } constexpr int floor_log2_pow10(int e) noexcept { using namespace log; return compute< 3, log2_10_fractional_digits, floor_log2_pow10_shift_amount, floor_log2_pow10_input_limit>(e); } constexpr int floor_log5_pow2(int e) noexcept { using namespace log; return compute< 0, log5_2_fractional_digits, floor_log5_pow2_shift_amount, floor_log5_pow2_input_limit>(e); } constexpr int floor_log5_pow2_minus_log5_3(int e) noexcept { using namespace log; return compute< 0, log5_2_fractional_digits, floor_log5_pow2_shift_amount, floor_log5_pow2_minus_log5_3_input_limit, 0, log5_3_fractional_digits>(e); } constexpr int floor_log10_pow2_minus_log10_4_over_3(int e) noexcept { using namespace log; return compute< 0, log10_2_fractional_digits, floor_log10_pow2_shift_amount, floor_log10_pow2_minus_log10_4_over_3_input_limit, 0, log10_4_over_3_fractional_digits>(e); } } //////////////////////////////////////////////////////////////////////////////////////// // Utilities for fast divisibility test //////////////////////////////////////////////////////////////////////////////////////// namespace div { template constexpr UInt modular_inverse(unsigned int bit_width = unsigned(value_bits)) noexcept { // By Euler's theorem, a^phi(2^n) == 1 (mod 2^n), // where phi(2^n) = 2^(n-1), so the modular inverse of a is // a^(2^(n-1) - 1) = a^(1 + 2 + 2^2 + ... + 2^(n-2)) std::common_type_t mod_inverse = 1; for (unsigned int i = 1; i < bit_width; ++i) { mod_inverse = mod_inverse * mod_inverse * a; } if (bit_width < value_bits) { auto mask = UInt((UInt(1) << bit_width) - 1); return UInt(mod_inverse & mask); } else { return UInt(mod_inverse); } } template struct table_t { static_assert(std::is_unsigned_v); static_assert(a % 2 != 0); static_assert(N > 0); static constexpr std::size_t size = N; UInt mod_inv[N]; UInt max_quotients[N]; }; template struct table_holder { static constexpr table_t table = [] { constexpr auto mod_inverse = modular_inverse(); table_t table{}; std::common_type_t pow_of_mod_inverse = 1; UInt pow_of_a = 1; for (std::size_t i = 0; i < N; ++i) { table.mod_inv[i] = UInt(pow_of_mod_inverse); table.max_quotients[i] = UInt(std::numeric_limits::max() / pow_of_a); pow_of_mod_inverse *= mod_inverse; pow_of_a *= a; } return table; }(); }; template constexpr bool divisible_by_power_of_5(UInt x, unsigned int exp) noexcept { auto const& table = table_holder::table; assert(exp < table.size); return (x * table.mod_inv[exp]) <= table.max_quotients[exp]; } template constexpr bool divisible_by_power_of_2(UInt x, unsigned int exp) noexcept { assert(exp >= 1); assert(x != 0); #if JKJ_HAS_COUNTR_ZERO_INTRINSIC return bits::countr_zero(x) >= int(exp); #else if (exp >= value_bits) { return false; } auto mask = UInt((UInt(1) << exp) - 1); return (x & mask) == 0; #endif } // Replace n by floor(n / 5^N) // Returns true if and only if n is divisible by 5^N // Precondition: n <= 2 * 5^(N+1) template struct check_divisibility_and_divide_by_pow5_info; template <> struct check_divisibility_and_divide_by_pow5_info<1> { static constexpr std::uint32_t magic_number = 0xcccd; static constexpr int bits_for_comparison = 16; static constexpr std::uint32_t threshold = 0x3333; static constexpr int shift_amount = 18; }; template <> struct check_divisibility_and_divide_by_pow5_info<2> { static constexpr std::uint32_t magic_number = 0xa429; static constexpr int bits_for_comparison = 8; static constexpr std::uint32_t threshold = 0x0a; static constexpr int shift_amount = 20; }; template constexpr bool check_divisibility_and_divide_by_pow5(std::uint32_t& n) noexcept { // Make sure the computation for max_n does not overflow static_assert(N + 1 <= log::floor_log5_pow2(31)); assert(n <= compute_power(std::uint32_t(5)) * 2); using info = check_divisibility_and_divide_by_pow5_info; n *= info::magic_number; constexpr std::uint32_t comparison_mask = info::bits_for_comparison >= 32 ? std::numeric_limits::max() : std::uint32_t((std::uint32_t(1) << info::bits_for_comparison) - 1); if ((n & comparison_mask) <= info::threshold) { n >>= info::shift_amount; return true; } else { n >>= info::shift_amount; return false; } } // Compute floor(n / 10^N) for small n and N // Precondition: n <= 10^(N+1) template struct small_division_by_pow10_info; template <> struct small_division_by_pow10_info<1> { static constexpr std::uint32_t magic_number = 0xcccd; static constexpr int shift_amount = 19; }; template <> struct small_division_by_pow10_info<2> { static constexpr std::uint32_t magic_number = 0xa3d8; static constexpr int shift_amount = 22; }; template constexpr std::uint32_t small_division_by_pow10(std::uint32_t n) noexcept { assert(n <= compute_power(std::uint32_t(10))); return (n * small_division_by_pow10_info::magic_number) >> small_division_by_pow10_info::shift_amount; } // Compute floor(n / 10^N) for small N // Precondition: n <= 2^a * 5^b (a = max_pow2, b = max_pow5) template constexpr UInt divide_by_pow10(UInt n) noexcept { static_assert(N >= 0); // Ensure no overflow static_assert(max_pow2 + (log::floor_log2_pow10(max_pow5) - max_pow5) < value_bits); // Specialize for 64bit division by 1000 // Ensure that the correctness condition is met if constexpr (std::is_same_v && N == 3 && max_pow2 + (log::floor_log2_pow10(N + max_pow5) - (N + max_pow5)) < 70) { return wuint::umul128_upper64(n, 0x8312'6e97'8d4f'df3c) >> 9; } else { constexpr auto divisor = compute_power(UInt(10)); return n / divisor; } } } } //////////////////////////////////////////////////////////////////////////////////////// // DIY floating-point data type //////////////////////////////////////////////////////////////////////////////////////// template struct fp_t; template struct fp_t { using float_type = Float; using carrier_uint = typename ieee754_traits::carrier_uint; carrier_uint significand; int exponent; }; template struct fp_t { using float_type = Float; using carrier_uint = typename ieee754_traits::carrier_uint; carrier_uint significand; int exponent; bool is_negative; }; template struct fp_t { using float_type = Float; using carrier_uint = typename ieee754_traits::carrier_uint; carrier_uint significand; int exponent; bool may_have_trailing_zeros; }; template struct fp_t { using float_type = Float; using carrier_uint = typename ieee754_traits::carrier_uint; carrier_uint significand; int exponent; bool is_negative; bool may_have_trailing_zeros; }; template using unsigned_fp_t = fp_t; template using signed_fp_t = fp_t; //////////////////////////////////////////////////////////////////////////////////////// // Computed cache entries //////////////////////////////////////////////////////////////////////////////////////// namespace detail { template struct cache_holder; template <> struct cache_holder { using cache_entry_type = std::uint64_t; static constexpr int cache_bits = 64; static constexpr int min_k = -31; static constexpr int max_k = 46; static constexpr cache_entry_type cache[] = { 0x81ceb32c4b43fcf5, 0xa2425ff75e14fc32, 0xcad2f7f5359a3b3f, 0xfd87b5f28300ca0e, 0x9e74d1b791e07e49, 0xc612062576589ddb, 0xf79687aed3eec552, 0x9abe14cd44753b53, 0xc16d9a0095928a28, 0xf1c90080baf72cb2, 0x971da05074da7bef, 0xbce5086492111aeb, 0xec1e4a7db69561a6, 0x9392ee8e921d5d08, 0xb877aa3236a4b44a, 0xe69594bec44de15c, 0x901d7cf73ab0acda, 0xb424dc35095cd810, 0xe12e13424bb40e14, 0x8cbccc096f5088cc, 0xafebff0bcb24aaff, 0xdbe6fecebdedd5bf, 0x89705f4136b4a598, 0xabcc77118461cefd, 0xd6bf94d5e57a42bd, 0x8637bd05af6c69b6, 0xa7c5ac471b478424, 0xd1b71758e219652c, 0x83126e978d4fdf3c, 0xa3d70a3d70a3d70b, 0xcccccccccccccccd, 0x8000000000000000, 0xa000000000000000, 0xc800000000000000, 0xfa00000000000000, 0x9c40000000000000, 0xc350000000000000, 0xf424000000000000, 0x9896800000000000, 0xbebc200000000000, 0xee6b280000000000, 0x9502f90000000000, 0xba43b74000000000, 0xe8d4a51000000000, 0x9184e72a00000000, 0xb5e620f480000000, 0xe35fa931a0000000, 0x8e1bc9bf04000000, 0xb1a2bc2ec5000000, 0xde0b6b3a76400000, 0x8ac7230489e80000, 0xad78ebc5ac620000, 0xd8d726b7177a8000, 0x878678326eac9000, 0xa968163f0a57b400, 0xd3c21bcecceda100, 0x84595161401484a0, 0xa56fa5b99019a5c8, 0xcecb8f27f4200f3a, 0x813f3978f8940984, 0xa18f07d736b90be5, 0xc9f2c9cd04674ede, 0xfc6f7c4045812296, 0x9dc5ada82b70b59d, 0xc5371912364ce305, 0xf684df56c3e01bc6, 0x9a130b963a6c115c, 0xc097ce7bc90715b3, 0xf0bdc21abb48db20, 0x96769950b50d88f4, 0xbc143fa4e250eb31, 0xeb194f8e1ae525fd, 0x92efd1b8d0cf37be, 0xb7abc627050305ad, 0xe596b7b0c643c719, 0x8f7e32ce7bea5c6f, 0xb35dbf821ae4f38b, 0xe0352f62a19e306e }; }; template <> struct cache_holder { using cache_entry_type = wuint::uint128; static constexpr int cache_bits = 128; static constexpr int min_k = -292; static constexpr int max_k = 326; static constexpr cache_entry_type cache[] = { { 0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b }, { 0x9faacf3df73609b1, 0x77b191618c54e9ad }, { 0xc795830d75038c1d, 0xd59df5b9ef6a2418 }, { 0xf97ae3d0d2446f25, 0x4b0573286b44ad1e }, { 0x9becce62836ac577, 0x4ee367f9430aec33 }, { 0xc2e801fb244576d5, 0x229c41f793cda740 }, { 0xf3a20279ed56d48a, 0x6b43527578c11110 }, { 0x9845418c345644d6, 0x830a13896b78aaaa }, { 0xbe5691ef416bd60c, 0x23cc986bc656d554 }, { 0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa9 }, { 0x94b3a202eb1c3f39, 0x7bf7d71432f3d6aa }, { 0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc54 }, { 0xe858ad248f5c22c9, 0xd1b3400f8f9cff69 }, { 0x91376c36d99995be, 0x23100809b9c21fa2 }, { 0xb58547448ffffb2d, 0xabd40a0c2832a78b }, { 0xe2e69915b3fff9f9, 0x16c90c8f323f516d }, { 0x8dd01fad907ffc3b, 0xae3da7d97f6792e4 }, { 0xb1442798f49ffb4a, 0x99cd11cfdf41779d }, { 0xdd95317f31c7fa1d, 0x40405643d711d584 }, { 0x8a7d3eef7f1cfc52, 0x482835ea666b2573 }, { 0xad1c8eab5ee43b66, 0xda3243650005eed0 }, { 0xd863b256369d4a40, 0x90bed43e40076a83 }, { 0x873e4f75e2224e68, 0x5a7744a6e804a292 }, { 0xa90de3535aaae202, 0x711515d0a205cb37 }, { 0xd3515c2831559a83, 0x0d5a5b44ca873e04 }, { 0x8412d9991ed58091, 0xe858790afe9486c3 }, { 0xa5178fff668ae0b6, 0x626e974dbe39a873 }, { 0xce5d73ff402d98e3, 0xfb0a3d212dc81290 }, { 0x80fa687f881c7f8e, 0x7ce66634bc9d0b9a }, { 0xa139029f6a239f72, 0x1c1fffc1ebc44e81 }, { 0xc987434744ac874e, 0xa327ffb266b56221 }, { 0xfbe9141915d7a922, 0x4bf1ff9f0062baa9 }, { 0x9d71ac8fada6c9b5, 0x6f773fc3603db4aa }, { 0xc4ce17b399107c22, 0xcb550fb4384d21d4 }, { 0xf6019da07f549b2b, 0x7e2a53a146606a49 }, { 0x99c102844f94e0fb, 0x2eda7444cbfc426e }, { 0xc0314325637a1939, 0xfa911155fefb5309 }, { 0xf03d93eebc589f88, 0x793555ab7eba27cb }, { 0x96267c7535b763b5, 0x4bc1558b2f3458df }, { 0xbbb01b9283253ca2, 0x9eb1aaedfb016f17 }, { 0xea9c227723ee8bcb, 0x465e15a979c1cadd }, { 0x92a1958a7675175f, 0x0bfacd89ec191eca }, { 0xb749faed14125d36, 0xcef980ec671f667c }, { 0xe51c79a85916f484, 0x82b7e12780e7401b }, { 0x8f31cc0937ae58d2, 0xd1b2ecb8b0908811 }, { 0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa16 }, { 0xdfbdcece67006ac9, 0x67a791e093e1d49b }, { 0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e1 }, { 0xaecc49914078536d, 0x58fae9f773886e19 }, { 0xda7f5bf590966848, 0xaf39a475506a899f }, { 0x888f99797a5e012d, 0x6d8406c952429604 }, { 0xaab37fd7d8f58178, 0xc8e5087ba6d33b84 }, { 0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a65 }, { 0x855c3be0a17fcd26, 0x5cf2eea09a550680 }, { 0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f }, { 0xd0601d8efc57b08b, 0xf13b94daf124da27 }, { 0x823c12795db6ce57, 0x76c53d08d6b70859 }, { 0xa2cb1717b52481ed, 0x54768c4b0c64ca6f }, { 0xcb7ddcdda26da268, 0xa9942f5dcf7dfd0a }, { 0xfe5d54150b090b02, 0xd3f93b35435d7c4d }, { 0x9efa548d26e5a6e1, 0xc47bc5014a1a6db0 }, { 0xc6b8e9b0709f109a, 0x359ab6419ca1091c }, { 0xf867241c8cc6d4c0, 0xc30163d203c94b63 }, { 0x9b407691d7fc44f8, 0x79e0de63425dcf1e }, { 0xc21094364dfb5636, 0x985915fc12f542e5 }, { 0xf294b943e17a2bc4, 0x3e6f5b7b17b2939e }, { 0x979cf3ca6cec5b5a, 0xa705992ceecf9c43 }, { 0xbd8430bd08277231, 0x50c6ff782a838354 }, { 0xece53cec4a314ebd, 0xa4f8bf5635246429 }, { 0x940f4613ae5ed136, 0x871b7795e136be9a }, { 0xb913179899f68584, 0x28e2557b59846e40 }, { 0xe757dd7ec07426e5, 0x331aeada2fe589d0 }, { 0x9096ea6f3848984f, 0x3ff0d2c85def7622 }, { 0xb4bca50b065abe63, 0x0fed077a756b53aa }, { 0xe1ebce4dc7f16dfb, 0xd3e8495912c62895 }, { 0x8d3360f09cf6e4bd, 0x64712dd7abbbd95d }, { 0xb080392cc4349dec, 0xbd8d794d96aacfb4 }, { 0xdca04777f541c567, 0xecf0d7a0fc5583a1 }, { 0x89e42caaf9491b60, 0xf41686c49db57245 }, { 0xac5d37d5b79b6239, 0x311c2875c522ced6 }, { 0xd77485cb25823ac7, 0x7d633293366b828c }, { 0x86a8d39ef77164bc, 0xae5dff9c02033198 }, { 0xa8530886b54dbdeb, 0xd9f57f830283fdfd }, { 0xd267caa862a12d66, 0xd072df63c324fd7c }, { 0x8380dea93da4bc60, 0x4247cb9e59f71e6e }, { 0xa46116538d0deb78, 0x52d9be85f074e609 }, { 0xcd795be870516656, 0x67902e276c921f8c }, { 0x806bd9714632dff6, 0x00ba1cd8a3db53b7 }, { 0xa086cfcd97bf97f3, 0x80e8a40eccd228a5 }, { 0xc8a883c0fdaf7df0, 0x6122cd128006b2ce }, { 0xfad2a4b13d1b5d6c, 0x796b805720085f82 }, { 0x9cc3a6eec6311a63, 0xcbe3303674053bb1 }, { 0xc3f490aa77bd60fc, 0xbedbfc4411068a9d }, { 0xf4f1b4d515acb93b, 0xee92fb5515482d45 }, { 0x991711052d8bf3c5, 0x751bdd152d4d1c4b }, { 0xbf5cd54678eef0b6, 0xd262d45a78a0635e }, { 0xef340a98172aace4, 0x86fb897116c87c35 }, { 0x9580869f0e7aac0e, 0xd45d35e6ae3d4da1 }, { 0xbae0a846d2195712, 0x8974836059cca10a }, { 0xe998d258869facd7, 0x2bd1a438703fc94c }, { 0x91ff83775423cc06, 0x7b6306a34627ddd0 }, { 0xb67f6455292cbf08, 0x1a3bc84c17b1d543 }, { 0xe41f3d6a7377eeca, 0x20caba5f1d9e4a94 }, { 0x8e938662882af53e, 0x547eb47b7282ee9d }, { 0xb23867fb2a35b28d, 0xe99e619a4f23aa44 }, { 0xdec681f9f4c31f31, 0x6405fa00e2ec94d5 }, { 0x8b3c113c38f9f37e, 0xde83bc408dd3dd05 }, { 0xae0b158b4738705e, 0x9624ab50b148d446 }, { 0xd98ddaee19068c76, 0x3badd624dd9b0958 }, { 0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d7 }, { 0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4d }, { 0xd47487cc8470652b, 0x7647c32000696720 }, { 0x84c8d4dfd2c63f3b, 0x29ecd9f40041e074 }, { 0xa5fb0a17c777cf09, 0xf468107100525891 }, { 0xcf79cc9db955c2cc, 0x7182148d4066eeb5 }, { 0x81ac1fe293d599bf, 0xc6f14cd848405531 }, { 0xa21727db38cb002f, 0xb8ada00e5a506a7d }, { 0xca9cf1d206fdc03b, 0xa6d90811f0e4851d }, { 0xfd442e4688bd304a, 0x908f4a166d1da664 }, { 0x9e4a9cec15763e2e, 0x9a598e4e043287ff }, { 0xc5dd44271ad3cdba, 0x40eff1e1853f29fe }, { 0xf7549530e188c128, 0xd12bee59e68ef47d }, { 0x9a94dd3e8cf578b9, 0x82bb74f8301958cf }, { 0xc13a148e3032d6e7, 0xe36a52363c1faf02 }, { 0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac2 }, { 0x96f5600f15a7b7e5, 0x29ab103a5ef8c0ba }, { 0xbcb2b812db11a5de, 0x7415d448f6b6f0e8 }, { 0xebdf661791d60f56, 0x111b495b3464ad22 }, { 0x936b9fcebb25c995, 0xcab10dd900beec35 }, { 0xb84687c269ef3bfb, 0x3d5d514f40eea743 }, { 0xe65829b3046b0afa, 0x0cb4a5a3112a5113 }, { 0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ac }, { 0xb3f4e093db73a093, 0x59ed216765690f57 }, { 0xe0f218b8d25088b8, 0x306869c13ec3532d }, { 0x8c974f7383725573, 0x1e414218c73a13fc }, { 0xafbd2350644eeacf, 0xe5d1929ef90898fb }, { 0xdbac6c247d62a583, 0xdf45f746b74abf3a }, { 0x894bc396ce5da772, 0x6b8bba8c328eb784 }, { 0xab9eb47c81f5114f, 0x066ea92f3f326565 }, { 0xd686619ba27255a2, 0xc80a537b0efefebe }, { 0x8613fd0145877585, 0xbd06742ce95f5f37 }, { 0xa798fc4196e952e7, 0x2c48113823b73705 }, { 0xd17f3b51fca3a7a0, 0xf75a15862ca504c6 }, { 0x82ef85133de648c4, 0x9a984d73dbe722fc }, { 0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebbb }, { 0xcc963fee10b7d1b3, 0x318df905079926a9 }, { 0xffbbcfe994e5c61f, 0xfdf17746497f7053 }, { 0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa634 }, { 0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc1 }, { 0xf9bd690a1b68637b, 0x3dfdce7aa3c673b1 }, { 0x9c1661a651213e2d, 0x06bea10ca65c084f }, { 0xc31bfa0fe5698db8, 0x486e494fcff30a63 }, { 0xf3e2f893dec3f126, 0x5a89dba3c3efccfb }, { 0x986ddb5c6b3a76b7, 0xf89629465a75e01d }, { 0xbe89523386091465, 0xf6bbb397f1135824 }, { 0xee2ba6c0678b597f, 0x746aa07ded582e2d }, { 0x94db483840b717ef, 0xa8c2a44eb4571cdd }, { 0xba121a4650e4ddeb, 0x92f34d62616ce414 }, { 0xe896a0d7e51e1566, 0x77b020baf9c81d18 }, { 0x915e2486ef32cd60, 0x0ace1474dc1d122f }, { 0xb5b5ada8aaff80b8, 0x0d819992132456bb }, { 0xe3231912d5bf60e6, 0x10e1fff697ed6c6a }, { 0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2 }, { 0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb3 }, { 0xddd0467c64bce4a0, 0xac7cb3f6d05ddbdf }, { 0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96c }, { 0xad4ab7112eb3929d, 0x86c16c98d2c953c7 }, { 0xd89d64d57a607744, 0xe871c7bf077ba8b8 }, { 0x87625f056c7c4a8b, 0x11471cd764ad4973 }, { 0xa93af6c6c79b5d2d, 0xd598e40d3dd89bd0 }, { 0xd389b47879823479, 0x4aff1d108d4ec2c4 }, { 0x843610cb4bf160cb, 0xcedf722a585139bb }, { 0xa54394fe1eedb8fe, 0xc2974eb4ee658829 }, { 0xce947a3da6a9273e, 0x733d226229feea33 }, { 0x811ccc668829b887, 0x0806357d5a3f5260 }, { 0xa163ff802a3426a8, 0xca07c2dcb0cf26f8 }, { 0xc9bcff6034c13052, 0xfc89b393dd02f0b6 }, { 0xfc2c3f3841f17c67, 0xbbac2078d443ace3 }, { 0x9d9ba7832936edc0, 0xd54b944b84aa4c0e }, { 0xc5029163f384a931, 0x0a9e795e65d4df12 }, { 0xf64335bcf065d37d, 0x4d4617b5ff4a16d6 }, { 0x99ea0196163fa42e, 0x504bced1bf8e4e46 }, { 0xc06481fb9bcf8d39, 0xe45ec2862f71e1d7 }, { 0xf07da27a82c37088, 0x5d767327bb4e5a4d }, { 0x964e858c91ba2655, 0x3a6a07f8d510f870 }, { 0xbbe226efb628afea, 0x890489f70a55368c }, { 0xeadab0aba3b2dbe5, 0x2b45ac74ccea842f }, { 0x92c8ae6b464fc96f, 0x3b0b8bc90012929e }, { 0xb77ada0617e3bbcb, 0x09ce6ebb40173745 }, { 0xe55990879ddcaabd, 0xcc420a6a101d0516 }, { 0x8f57fa54c2a9eab6, 0x9fa946824a12232e }, { 0xb32df8e9f3546564, 0x47939822dc96abfa }, { 0xdff9772470297ebd, 0x59787e2b93bc56f8 }, { 0x8bfbea76c619ef36, 0x57eb4edb3c55b65b }, { 0xaefae51477a06b03, 0xede622920b6b23f2 }, { 0xdab99e59958885c4, 0xe95fab368e45ecee }, { 0x88b402f7fd75539b, 0x11dbcb0218ebb415 }, { 0xaae103b5fcd2a881, 0xd652bdc29f26a11a }, { 0xd59944a37c0752a2, 0x4be76d3346f04960 }, { 0x857fcae62d8493a5, 0x6f70a4400c562ddc }, { 0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb953 }, { 0xd097ad07a71f26b2, 0x7e2000a41346a7a8 }, { 0x825ecc24c873782f, 0x8ed400668c0c28c9 }, { 0xa2f67f2dfa90563b, 0x728900802f0f32fb }, { 0xcbb41ef979346bca, 0x4f2b40a03ad2ffba }, { 0xfea126b7d78186bc, 0xe2f610c84987bfa9 }, { 0x9f24b832e6b0f436, 0x0dd9ca7d2df4d7ca }, { 0xc6ede63fa05d3143, 0x91503d1c79720dbc }, { 0xf8a95fcf88747d94, 0x75a44c6397ce912b }, { 0x9b69dbe1b548ce7c, 0xc986afbe3ee11abb }, { 0xc24452da229b021b, 0xfbe85badce996169 }, { 0xf2d56790ab41c2a2, 0xfae27299423fb9c4 }, { 0x97c560ba6b0919a5, 0xdccd879fc967d41b }, { 0xbdb6b8e905cb600f, 0x5400e987bbc1c921 }, { 0xed246723473e3813, 0x290123e9aab23b69 }, { 0x9436c0760c86e30b, 0xf9a0b6720aaf6522 }, { 0xb94470938fa89bce, 0xf808e40e8d5b3e6a }, { 0xe7958cb87392c2c2, 0xb60b1d1230b20e05 }, { 0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c3 }, { 0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af4 }, { 0xe2280b6c20dd5232, 0x25c6da63c38de1b1 }, { 0x8d590723948a535f, 0x579c487e5a38ad0f }, { 0xb0af48ec79ace837, 0x2d835a9df0c6d852 }, { 0xdcdb1b2798182244, 0xf8e431456cf88e66 }, { 0x8a08f0f8bf0f156b, 0x1b8e9ecb641b5900 }, { 0xac8b2d36eed2dac5, 0xe272467e3d222f40 }, { 0xd7adf884aa879177, 0x5b0ed81dcc6abb10 }, { 0x86ccbb52ea94baea, 0x98e947129fc2b4ea }, { 0xa87fea27a539e9a5, 0x3f2398d747b36225 }, { 0xd29fe4b18e88640e, 0x8eec7f0d19a03aae }, { 0x83a3eeeef9153e89, 0x1953cf68300424ad }, { 0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd8 }, { 0xcdb02555653131b6, 0x3792f412cb06794e }, { 0x808e17555f3ebf11, 0xe2bbd88bbee40bd1 }, { 0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec5 }, { 0xc8de047564d20a8b, 0xf245825a5a445276 }, { 0xfb158592be068d2e, 0xeed6e2f0f0d56713 }, { 0x9ced737bb6c4183d, 0x55464dd69685606c }, { 0xc428d05aa4751e4c, 0xaa97e14c3c26b887 }, { 0xf53304714d9265df, 0xd53dd99f4b3066a9 }, { 0x993fe2c6d07b7fab, 0xe546a8038efe402a }, { 0xbf8fdb78849a5f96, 0xde98520472bdd034 }, { 0xef73d256a5c0f77c, 0x963e66858f6d4441 }, { 0x95a8637627989aad, 0xdde7001379a44aa9 }, { 0xbb127c53b17ec159, 0x5560c018580d5d53 }, { 0xe9d71b689dde71af, 0xaab8f01e6e10b4a7 }, { 0x9226712162ab070d, 0xcab3961304ca70e9 }, { 0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d23 }, { 0xe45c10c42a2b3b05, 0x8cb89a7db77c506b }, { 0x8eb98a7a9a5b04e3, 0x77f3608e92adb243 }, { 0xb267ed1940f1c61c, 0x55f038b237591ed4 }, { 0xdf01e85f912e37a3, 0x6b6c46dec52f6689 }, { 0x8b61313bbabce2c6, 0x2323ac4b3b3da016 }, { 0xae397d8aa96c1b77, 0xabec975e0a0d081b }, { 0xd9c7dced53c72255, 0x96e7bd358c904a22 }, { 0x881cea14545c7575, 0x7e50d64177da2e55 }, { 0xaa242499697392d2, 0xdde50bd1d5d0b9ea }, { 0xd4ad2dbfc3d07787, 0x955e4ec64b44e865 }, { 0x84ec3c97da624ab4, 0xbd5af13bef0b113f }, { 0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58f }, { 0xcfb11ead453994ba, 0x67de18eda5814af3 }, { 0x81ceb32c4b43fcf4, 0x80eacf948770ced8 }, { 0xa2425ff75e14fc31, 0xa1258379a94d028e }, { 0xcad2f7f5359a3b3e, 0x096ee45813a04331 }, { 0xfd87b5f28300ca0d, 0x8bca9d6e188853fd }, { 0x9e74d1b791e07e48, 0x775ea264cf55347e }, { 0xc612062576589dda, 0x95364afe032a819e }, { 0xf79687aed3eec551, 0x3a83ddbd83f52205 }, { 0x9abe14cd44753b52, 0xc4926a9672793543 }, { 0xc16d9a0095928a27, 0x75b7053c0f178294 }, { 0xf1c90080baf72cb1, 0x5324c68b12dd6339 }, { 0x971da05074da7bee, 0xd3f6fc16ebca5e04 }, { 0xbce5086492111aea, 0x88f4bb1ca6bcf585 }, { 0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6 }, { 0x9392ee8e921d5d07, 0x3aff322e62439fd0 }, { 0xb877aa3236a4b449, 0x09befeb9fad487c3 }, { 0xe69594bec44de15b, 0x4c2ebe687989a9b4 }, { 0x901d7cf73ab0acd9, 0x0f9d37014bf60a11 }, { 0xb424dc35095cd80f, 0x538484c19ef38c95 }, { 0xe12e13424bb40e13, 0x2865a5f206b06fba }, { 0x8cbccc096f5088cb, 0xf93f87b7442e45d4 }, { 0xafebff0bcb24aafe, 0xf78f69a51539d749 }, { 0xdbe6fecebdedd5be, 0xb573440e5a884d1c }, { 0x89705f4136b4a597, 0x31680a88f8953031 }, { 0xabcc77118461cefc, 0xfdc20d2b36ba7c3e }, { 0xd6bf94d5e57a42bc, 0x3d32907604691b4d }, { 0x8637bd05af6c69b5, 0xa63f9a49c2c1b110 }, { 0xa7c5ac471b478423, 0x0fcf80dc33721d54 }, { 0xd1b71758e219652b, 0xd3c36113404ea4a9 }, { 0x83126e978d4fdf3b, 0x645a1cac083126ea }, { 0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4 }, { 0xcccccccccccccccc, 0xcccccccccccccccd }, { 0x8000000000000000, 0x0000000000000000 }, { 0xa000000000000000, 0x0000000000000000 }, { 0xc800000000000000, 0x0000000000000000 }, { 0xfa00000000000000, 0x0000000000000000 }, { 0x9c40000000000000, 0x0000000000000000 }, { 0xc350000000000000, 0x0000000000000000 }, { 0xf424000000000000, 0x0000000000000000 }, { 0x9896800000000000, 0x0000000000000000 }, { 0xbebc200000000000, 0x0000000000000000 }, { 0xee6b280000000000, 0x0000000000000000 }, { 0x9502f90000000000, 0x0000000000000000 }, { 0xba43b74000000000, 0x0000000000000000 }, { 0xe8d4a51000000000, 0x0000000000000000 }, { 0x9184e72a00000000, 0x0000000000000000 }, { 0xb5e620f480000000, 0x0000000000000000 }, { 0xe35fa931a0000000, 0x0000000000000000 }, { 0x8e1bc9bf04000000, 0x0000000000000000 }, { 0xb1a2bc2ec5000000, 0x0000000000000000 }, { 0xde0b6b3a76400000, 0x0000000000000000 }, { 0x8ac7230489e80000, 0x0000000000000000 }, { 0xad78ebc5ac620000, 0x0000000000000000 }, { 0xd8d726b7177a8000, 0x0000000000000000 }, { 0x878678326eac9000, 0x0000000000000000 }, { 0xa968163f0a57b400, 0x0000000000000000 }, { 0xd3c21bcecceda100, 0x0000000000000000 }, { 0x84595161401484a0, 0x0000000000000000 }, { 0xa56fa5b99019a5c8, 0x0000000000000000 }, { 0xcecb8f27f4200f3a, 0x0000000000000000 }, { 0x813f3978f8940984, 0x4000000000000000 }, { 0xa18f07d736b90be5, 0x5000000000000000 }, { 0xc9f2c9cd04674ede, 0xa400000000000000 }, { 0xfc6f7c4045812296, 0x4d00000000000000 }, { 0x9dc5ada82b70b59d, 0xf020000000000000 }, { 0xc5371912364ce305, 0x6c28000000000000 }, { 0xf684df56c3e01bc6, 0xc732000000000000 }, { 0x9a130b963a6c115c, 0x3c7f400000000000 }, { 0xc097ce7bc90715b3, 0x4b9f100000000000 }, { 0xf0bdc21abb48db20, 0x1e86d40000000000 }, { 0x96769950b50d88f4, 0x1314448000000000 }, { 0xbc143fa4e250eb31, 0x17d955a000000000 }, { 0xeb194f8e1ae525fd, 0x5dcfab0800000000 }, { 0x92efd1b8d0cf37be, 0x5aa1cae500000000 }, { 0xb7abc627050305ad, 0xf14a3d9e40000000 }, { 0xe596b7b0c643c719, 0x6d9ccd05d0000000 }, { 0x8f7e32ce7bea5c6f, 0xe4820023a2000000 }, { 0xb35dbf821ae4f38b, 0xdda2802c8a800000 }, { 0xe0352f62a19e306e, 0xd50b2037ad200000 }, { 0x8c213d9da502de45, 0x4526f422cc340000 }, { 0xaf298d050e4395d6, 0x9670b12b7f410000 }, { 0xdaf3f04651d47b4c, 0x3c0cdd765f114000 }, { 0x88d8762bf324cd0f, 0xa5880a69fb6ac800 }, { 0xab0e93b6efee0053, 0x8eea0d047a457a00 }, { 0xd5d238a4abe98068, 0x72a4904598d6d880 }, { 0x85a36366eb71f041, 0x47a6da2b7f864750 }, { 0xa70c3c40a64e6c51, 0x999090b65f67d924 }, { 0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d }, { 0x82818f1281ed449f, 0xbff8f10e7a8921a4 }, { 0xa321f2d7226895c7, 0xaff72d52192b6a0d }, { 0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490 }, { 0xfee50b7025c36a08, 0x02f236d04753d5b4 }, { 0x9f4f2726179a2245, 0x01d762422c946590 }, { 0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5 }, { 0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2 }, { 0x9b934c3b330c8577, 0x63cc55f49f88eb2f }, { 0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb }, { 0xf316271c7fc3908a, 0x8bef464e3945ef7a }, { 0x97edd871cfda3a56, 0x97758bf0e3cbb5ac }, { 0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317 }, { 0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd }, { 0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a }, { 0xb975d6b6ee39e436, 0xb3e2fd538e122b44 }, { 0xe7d34c64a9c85d44, 0x60dbbca87196b616 }, { 0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd }, { 0xb51d13aea4a488dd, 0x6babab6398bdbe41 }, { 0xe264589a4dcdab14, 0xc696963c7eed2dd1 }, { 0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2 }, { 0xb0de65388cc8ada8, 0x3b25a55f43294bcb }, { 0xdd15fe86affad912, 0x49ef0eb713f39ebe }, { 0x8a2dbf142dfcc7ab, 0x6e3569326c784337 }, { 0xacb92ed9397bf996, 0x49c2c37f07965404 }, { 0xd7e77a8f87daf7fb, 0xdc33745ec97be906 }, { 0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3 }, { 0xa8acd7c0222311bc, 0xc40832ea0d68ce0c }, { 0xd2d80db02aabd62b, 0xf50a3fa490c30190 }, { 0x83c7088e1aab65db, 0x792667c6da79e0fa }, { 0xa4b8cab1a1563f52, 0x577001b891185938 }, { 0xcde6fd5e09abcf26, 0xed4c0226b55e6f86 }, { 0x80b05e5ac60b6178, 0x544f8158315b05b4 }, { 0xa0dc75f1778e39d6, 0x696361ae3db1c721 }, { 0xc913936dd571c84c, 0x03bc3a19cd1e38e9 }, { 0xfb5878494ace3a5f, 0x04ab48a04065c723 }, { 0x9d174b2dcec0e47b, 0x62eb0d64283f9c76 }, { 0xc45d1df942711d9a, 0x3ba5d0bd324f8394 }, { 0xf5746577930d6500, 0xca8f44ec7ee36479 }, { 0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb }, { 0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e }, { 0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e }, { 0x95d04aee3b80ece5, 0xbba1f1d158724a12 }, { 0xbb445da9ca61281f, 0x2a8a6e45ae8edc97 }, { 0xea1575143cf97226, 0xf52d09d71a3293bd }, { 0x924d692ca61be758, 0x593c2626705f9c56 }, { 0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c }, { 0xe498f455c38b997a, 0x0b6dfb9c0f956447 }, { 0x8edf98b59a373fec, 0x4724bd4189bd5eac }, { 0xb2977ee300c50fe7, 0x58edec91ec2cb657 }, { 0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed }, { 0x8b865b215899f46c, 0xbd79e0d20082ee74 }, { 0xae67f1e9aec07187, 0xecd8590680a3aa11 }, { 0xda01ee641a708de9, 0xe80e6f4820cc9495 }, { 0x884134fe908658b2, 0x3109058d147fdcdd }, { 0xaa51823e34a7eede, 0xbd4b46f0599fd415 }, { 0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a }, { 0x850fadc09923329e, 0x03e2cf6bc604ddb0 }, { 0xa6539930bf6bff45, 0x84db8346b786151c }, { 0xcfe87f7cef46ff16, 0xe612641865679a63 }, { 0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e }, { 0xa26da3999aef7749, 0xe3be5e330f38f09d }, { 0xcb090c8001ab551c, 0x5cadf5bfd3072cc5 }, { 0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6 }, { 0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa }, { 0xc646d63501a1511d, 0xb281e1fd541501b8 }, { 0xf7d88bc24209a565, 0x1f225a7ca91a4226 }, { 0x9ae757596946075f, 0x3375788de9b06958 }, { 0xc1a12d2fc3978937, 0x0052d6b1641c83ae }, { 0xf209787bb47d6b84, 0xc0678c5dbd23a49a }, { 0x9745eb4d50ce6332, 0xf840b7ba963646e0 }, { 0xbd176620a501fbff, 0xb650e5a93bc3d898 }, { 0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe }, { 0x93ba47c980e98cdf, 0xc66f336c36b10137 }, { 0xb8a8d9bbe123f017, 0xb80b0047445d4184 }, { 0xe6d3102ad96cec1d, 0xa60dc059157491e5 }, { 0x9043ea1ac7e41392, 0x87c89837ad68db2f }, { 0xb454e4a179dd1877, 0x29babe4598c311fb }, { 0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a }, { 0x8ce2529e2734bb1d, 0x1899e4a65f58660c }, { 0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f }, { 0xdc21a1171d42645d, 0x76707543f4fa1f73 }, { 0x899504ae72497eba, 0x6a06494a791c53a8 }, { 0xabfa45da0edbde69, 0x0487db9d17636892 }, { 0xd6f8d7509292d603, 0x45a9d2845d3c42b6 }, { 0x865b86925b9bc5c2, 0x0b8a2392ba45a9b2 }, { 0xa7f26836f282b732, 0x8e6cac7768d7141e }, { 0xd1ef0244af2364ff, 0x3207d795430cd926 }, { 0x8335616aed761f1f, 0x7f44e6bd49e807b8 }, { 0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6 }, { 0xcd036837130890a1, 0x36dba887c37a8c0f }, { 0x802221226be55a64, 0xc2494954da2c9789 }, { 0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c }, { 0xc83553c5c8965d3d, 0x6f92829494e5acc7 }, { 0xfa42a8b73abbf48c, 0xcb772339ba1f17f9 }, { 0x9c69a97284b578d7, 0xff2a760414536efb }, { 0xc38413cf25e2d70d, 0xfef5138519684aba }, { 0xf46518c2ef5b8cd1, 0x7eb258665fc25d69 }, { 0x98bf2f79d5993802, 0xef2f773ffbd97a61 }, { 0xbeeefb584aff8603, 0xaafb550ffacfd8fa }, { 0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38 }, { 0x952ab45cfa97a0b2, 0xdd945a747bf26183 }, { 0xba756174393d88df, 0x94f971119aeef9e4 }, { 0xe912b9d1478ceb17, 0x7a37cd5601aab85d }, { 0x91abb422ccb812ee, 0xac62e055c10ab33a }, { 0xb616a12b7fe617aa, 0x577b986b314d6009 }, { 0xe39c49765fdf9d94, 0xed5a7e85fda0b80b }, { 0x8e41ade9fbebc27d, 0x14588f13be847307 }, { 0xb1d219647ae6b31c, 0x596eb2d8ae258fc8 }, { 0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb }, { 0x8aec23d680043bee, 0x25de7bb9480d5854 }, { 0xada72ccc20054ae9, 0xaf561aa79a10ae6a }, { 0xd910f7ff28069da4, 0x1b2ba1518094da04 }, { 0x87aa9aff79042286, 0x90fb44d2f05d0842 }, { 0xa99541bf57452b28, 0x353a1607ac744a53 }, { 0xd3fa922f2d1675f2, 0x42889b8997915ce8 }, { 0x847c9b5d7c2e09b7, 0x69956135febada11 }, { 0xa59bc234db398c25, 0x43fab9837e699095 }, { 0xcf02b2c21207ef2e, 0x94f967e45e03f4bb }, { 0x8161afb94b44f57d, 0x1d1be0eebac278f5 }, { 0xa1ba1ba79e1632dc, 0x6462d92a69731732 }, { 0xca28a291859bbf93, 0x7d7b8f7503cfdcfe }, { 0xfcb2cb35e702af78, 0x5cda735244c3d43e }, { 0x9defbf01b061adab, 0x3a0888136afa64a7 }, { 0xc56baec21c7a1916, 0x088aaa1845b8fdd0 }, { 0xf6c69a72a3989f5b, 0x8aad549e57273d45 }, { 0x9a3c2087a63f6399, 0x36ac54e2f678864b }, { 0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd }, { 0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5 }, { 0x969eb7c47859e743, 0x9f644ae5a4b1b325 }, { 0xbc4665b596706114, 0x873d5d9f0dde1fee }, { 0xeb57ff22fc0c7959, 0xa90cb506d155a7ea }, { 0x9316ff75dd87cbd8, 0x09a7f12442d588f2 }, { 0xb7dcbf5354e9bece, 0x0c11ed6d538aeb2f }, { 0xe5d3ef282a242e81, 0x8f1668c8a86da5fa }, { 0x8fa475791a569d10, 0xf96e017d694487bc }, { 0xb38d92d760ec4455, 0x37c981dcc395a9ac }, { 0xe070f78d3927556a, 0x85bbe253f47b1417 }, { 0x8c469ab843b89562, 0x93956d7478ccec8e }, { 0xaf58416654a6babb, 0x387ac8d1970027b2 }, { 0xdb2e51bfe9d0696a, 0x06997b05fcc0319e }, { 0x88fcf317f22241e2, 0x441fece3bdf81f03 }, { 0xab3c2fddeeaad25a, 0xd527e81cad7626c3 }, { 0xd60b3bd56a5586f1, 0x8a71e223d8d3b074 }, { 0x85c7056562757456, 0xf6872d5667844e49 }, { 0xa738c6bebb12d16c, 0xb428f8ac016561db }, { 0xd106f86e69d785c7, 0xe13336d701beba52 }, { 0x82a45b450226b39c, 0xecc0024661173473 }, { 0xa34d721642b06084, 0x27f002d7f95d0190 }, { 0xcc20ce9bd35c78a5, 0x31ec038df7b441f4 }, { 0xff290242c83396ce, 0x7e67047175a15271 }, { 0x9f79a169bd203e41, 0x0f0062c6e984d386 }, { 0xc75809c42c684dd1, 0x52c07b78a3e60868 }, { 0xf92e0c3537826145, 0xa7709a56ccdf8a82 }, { 0x9bbcc7a142b17ccb, 0x88a66076400bb691 }, { 0xc2abf989935ddbfe, 0x6acff893d00ea435 }, { 0xf356f7ebf83552fe, 0x0583f6b8c4124d43 }, { 0x98165af37b2153de, 0xc3727a337a8b704a }, { 0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c }, { 0xeda2ee1c7064130c, 0x1162def06f79df73 }, { 0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8 }, { 0xb9a74a0637ce2ee1, 0x6d953e2bd7173692 }, { 0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437 }, { 0x910ab1d4db9914a0, 0x1d9c9892400a22a2 }, { 0xb54d5e4a127f59c8, 0x2503beb6d00cab4b }, { 0xe2a0b5dc971f303a, 0x2e44ae64840fd61d }, { 0x8da471a9de737e24, 0x5ceaecfed289e5d2 }, { 0xb10d8e1456105dad, 0x7425a83e872c5f47 }, { 0xdd50f1996b947518, 0xd12f124e28f77719 }, { 0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f }, { 0xace73cbfdc0bfb7b, 0x636cc64d1001550b }, { 0xd8210befd30efa5a, 0x3c47f7e05401aa4e }, { 0x8714a775e3e95c78, 0x65acfaec34810a71 }, { 0xa8d9d1535ce3b396, 0x7f1839a741a14d0d }, { 0xd31045a8341ca07c, 0x1ede48111209a050 }, { 0x83ea2b892091e44d, 0x934aed0aab460432 }, { 0xa4e4b66b68b65d60, 0xf81da84d5617853f }, { 0xce1de40642e3f4b9, 0x36251260ab9d668e }, { 0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019 }, { 0xa1075a24e4421730, 0xb24cf65b8612f81f }, { 0xc94930ae1d529cfc, 0xdee033f26797b627 }, { 0xfb9b7cd9a4a7443c, 0x169840ef017da3b1 }, { 0x9d412e0806e88aa5, 0x8e1f289560ee864e }, { 0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2 }, { 0xf5b5d7ec8acb58a2, 0xae10af696774b1db }, { 0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29 }, { 0xbff610b0cc6edd3f, 0x17fd090a58d32af3 }, { 0xeff394dcff8a948e, 0xddfc4b4cef07f5b0 }, { 0x95f83d0a1fb69cd9, 0x4abdaf101564f98e }, { 0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1 }, { 0xea53df5fd18d5513, 0x84c86189216dc5ed }, { 0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4 }, { 0xb7118682dbb66a77, 0x3fbc8c33221dc2a1 }, { 0xe4d5e82392a40515, 0x0fabaf3feaa5334a }, { 0x8f05b1163ba6832d, 0x29cb4d87f2a7400e }, { 0xb2c71d5bca9023f8, 0x743e20e9ef511012 }, { 0xdf78e4b2bd342cf6, 0x914da9246b255416 }, { 0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e }, { 0xae9672aba3d0c320, 0xa184ac2473b529b1 }, { 0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e }, { 0x8865899617fb1871, 0x7e2fa67c7a658892 }, { 0xaa7eebfb9df9de8d, 0xddbb901b98feeab7 }, { 0xd51ea6fa85785631, 0x552a74227f3ea565 }, { 0x8533285c936b35de, 0xd53a88958f87275f }, { 0xa67ff273b8460356, 0x8a892abaf368f137 }, { 0xd01fef10a657842c, 0x2d2b7569b0432d85 }, { 0x8213f56a67f6b29b, 0x9c3b29620e29fc73 }, { 0xa298f2c501f45f42, 0x8349f3ba91b47b8f }, { 0xcb3f2f7642717713, 0x241c70a936219a73 }, { 0xfe0efb53d30dd4d7, 0xed238cd383aa0110 }, { 0x9ec95d1463e8a506, 0xf4363804324a40aa }, { 0xc67bb4597ce2ce48, 0xb143c6053edcd0d5 }, { 0xf81aa16fdc1b81da, 0xdd94b7868e94050a }, { 0x9b10a4e5e9913128, 0xca7cf2b4191c8326 }, { 0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0 }, { 0xf24a01a73cf2dccf, 0xbc633b39673c8cec }, { 0x976e41088617ca01, 0xd5be0503e085d813 }, { 0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18 }, { 0xec9c459d51852ba2, 0xddf8e7d60ed1219e }, { 0x93e1ab8252f33b45, 0xcabb90e5c942b503 }, { 0xb8da1662e7b00a17, 0x3d6a751f3b936243 }, { 0xe7109bfba19c0c9d, 0x0cc512670a783ad4 }, { 0x906a617d450187e2, 0x27fb2b80668b24c5 }, { 0xb484f9dc9641e9da, 0xb1f9f660802dedf6 }, { 0xe1a63853bbd26451, 0x5e7873f8a0396973 }, { 0x8d07e33455637eb2, 0xdb0b487b6423e1e8 }, { 0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62 }, { 0xdc5c5301c56b75f7, 0x7641a140cc7810fb }, { 0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d }, { 0xac2820d9623bf429, 0x546345fa9fbdcd44 }, { 0xd732290fbacaf133, 0xa97c177947ad4095 }, { 0x867f59a9d4bed6c0, 0x49ed8eabcccc485d }, { 0xa81f301449ee8c70, 0x5c68f256bfff5a74 }, { 0xd226fc195c6a2f8c, 0x73832eec6fff3111 }, { 0x83585d8fd9c25db7, 0xc831fd53c5ff7eab }, { 0xa42e74f3d032f525, 0xba3e7ca8b77f5e55 }, { 0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb }, { 0x80444b5e7aa7cf85, 0x7980d163cf5b81b3 }, { 0xa0555e361951c366, 0xd7e105bcc332621f }, { 0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7 }, { 0xfa856334878fc150, 0xb14f98f6f0feb951 }, { 0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3 }, { 0xc3b8358109e84f07, 0x0a862f80ec4700c8 }, { 0xf4a642e14c6262c8, 0xcd27bb612758c0fa }, { 0x98e7e9cccfbd7dbd, 0x8038d51cb897789c }, { 0xbf21e44003acdd2c, 0xe0470a63e6bd56c3 }, { 0xeeea5d5004981478, 0x1858ccfce06cac74 }, { 0x95527a5202df0ccb, 0x0f37801e0c43ebc8 }, { 0xbaa718e68396cffd, 0xd30560258f54e6ba }, { 0xe950df20247c83fd, 0x47c6b82ef32a2069 }, { 0x91d28b7416cdd27e, 0x4cdc331d57fa5441 }, { 0xb6472e511c81471d, 0xe0133fe4adf8e952 }, { 0xe3d8f9e563a198e5, 0x58180fddd97723a6 }, { 0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648 }, { 0xb201833b35d63f73, 0x2cd2cc6551e513da }, { 0xde81e40a034bcf4f, 0xf8077f7ea65e58d1 }, { 0x8b112e86420f6191, 0xfb04afaf27faf782 }, { 0xadd57a27d29339f6, 0x79c5db9af1f9b563 }, { 0xd94ad8b1c7380874, 0x18375281ae7822bc }, { 0x87cec76f1c830548, 0x8f2293910d0b15b5 }, { 0xa9c2794ae3a3c69a, 0xb2eb3875504ddb22 }, { 0xd433179d9c8cb841, 0x5fa60692a46151eb }, { 0x849feec281d7f328, 0xdbc7c41ba6bcd333 }, { 0xa5c7ea73224deff3, 0x12b9b522906c0800 }, { 0xcf39e50feae16bef, 0xd768226b34870a00 }, { 0x81842f29f2cce375, 0xe6a1158300d46640 }, { 0xa1e53af46f801c53, 0x60495ae3c1097fd0 }, { 0xca5e89b18b602368, 0x385bb19cb14bdfc4 }, { 0xfcf62c1dee382c42, 0x46729e03dd9ed7b5 }, { 0x9e19db92b4e31ba9, 0x6c07a2c26a8346d1 }, { 0xc5a05277621be293, 0xc7098b7305241885 }, { 0xf70867153aa2db38, 0xb8cbee4fc66d1ea7 } }; }; // Compressed cache for double struct compressed_cache_detail { static constexpr int compression_ratio = 27; static constexpr std::size_t compressed_table_size = (cache_holder::max_k - cache_holder::min_k + compression_ratio) / compression_ratio; struct cache_holder_t { wuint::uint128 table[compressed_table_size]; }; static constexpr cache_holder_t cache = [] { cache_holder_t res{}; for (std::size_t i = 0; i < compressed_table_size; ++i) { res.table[i] = cache_holder::cache[i * compression_ratio]; } return res; }(); struct pow5_holder_t { std::uint64_t table[compression_ratio]; }; static constexpr pow5_holder_t pow5 = [] { pow5_holder_t res{}; std::uint64_t p = 1; for (std::size_t i = 0; i < compression_ratio; ++i) { res.table[i] = p; p *= 5; } return res; }(); static constexpr std::uint32_t errors[] = { 0x50001400, 0x54044100, 0x54014555, 0x55954415, 0x54115555, 0x00000001, 0x50000000, 0x00104000, 0x54010004, 0x05004001, 0x55555544, 0x41545555, 0x54040551, 0x15445545, 0x51555514, 0x10000015, 0x00101100, 0x01100015, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x04450514, 0x45414110, 0x55555145, 0x50544050, 0x15040155, 0x11054140, 0x50111514, 0x11451454, 0x00400541, 0x00000000, 0x55555450, 0x10056551, 0x10054011, 0x55551014, 0x69514555, 0x05151109, 0x00155555 }; }; } //////////////////////////////////////////////////////////////////////////////////////// // Policies //////////////////////////////////////////////////////////////////////////////////////// namespace detail { // Forward declare the implementation class template struct impl; namespace policy_impl { // Sign policy namespace sign { struct base {}; struct ignore : base { using sign_policy = ignore; static constexpr bool return_has_sign = false; template static constexpr void handle_sign(ieee754_bits, Fp&) noexcept {} }; struct return_sign : base { using sign_policy = return_sign; static constexpr bool return_has_sign = true; template static constexpr void handle_sign(ieee754_bits br, Fp& fp) noexcept { fp.is_negative = br.is_negative(); } }; } // Trailing zero policy namespace trailing_zero { struct base {}; struct ignore : base { using trailing_zero_policy = ignore; static constexpr bool report_trailing_zeros = false; template static constexpr void on_trailing_zeros(Fp&) noexcept {} template static constexpr void no_trailing_zeros(Fp&) noexcept {} }; struct remove : base { using trailing_zero_policy = remove; static constexpr bool report_trailing_zeros = false; template static constexpr void on_trailing_zeros(Fp& fp) noexcept { fp.exponent += impl::remove_trailing_zeros(fp.significand); } template static constexpr void no_trailing_zeros(Fp&) noexcept {} }; struct report : base { using trailing_zero_policy = report; static constexpr bool report_trailing_zeros = true; template static constexpr void on_trailing_zeros(Fp& fp) noexcept { fp.may_have_trailing_zeros = true; } template static constexpr void no_trailing_zeros(Fp& fp) noexcept { fp.may_have_trailing_zeros = false; } }; } // Rounding mode policy namespace rounding_mode { struct base {}; enum class tag_t { to_nearest, left_closed_directed, right_closed_directed }; namespace interval_type { struct symmetric_boundary { static constexpr bool is_symmetric = true; bool is_closed; constexpr bool include_left_endpoint() const noexcept { return is_closed; } constexpr bool include_right_endpoint() const noexcept { return is_closed; } }; struct asymmetric_boundary { static constexpr bool is_symmetric = false; bool is_left_closed; constexpr bool include_left_endpoint() const noexcept { return is_left_closed; } constexpr bool include_right_endpoint() const noexcept { return !is_left_closed; } }; struct closed { static constexpr bool is_symmetric = true; static constexpr bool include_left_endpoint() noexcept { return true; } static constexpr bool include_right_endpoint() noexcept { return true; } }; struct open { static constexpr bool is_symmetric = true; static constexpr bool include_left_endpoint() noexcept { return false; } static constexpr bool include_right_endpoint() noexcept { return false; } }; struct left_closed_right_open { static constexpr bool is_symmetric = false; static constexpr bool include_left_endpoint() noexcept { return true; } static constexpr bool include_right_endpoint() noexcept { return false; } }; struct right_closed_left_open { static constexpr bool is_symmetric = false; static constexpr bool include_left_endpoint() noexcept { return false; } static constexpr bool include_right_endpoint() noexcept { return true; } }; } struct nearest_to_even : base { using rounding_mode_policy = nearest_to_even; static constexpr auto tag = tag_t::to_nearest; template static auto delegate(ieee754_bits, Func&& f) noexcept { return f(nearest_to_even{}); } template static constexpr interval_type::symmetric_boundary interval_type_normal(ieee754_bits br) noexcept { return{ br.u % 2 == 0 }; } template static constexpr interval_type::closed interval_type_shorter(ieee754_bits) noexcept { return{}; } }; struct nearest_to_odd : base { using rounding_mode_policy = nearest_to_odd; static constexpr auto tag = tag_t::to_nearest; template static auto delegate(ieee754_bits, Func&& f) noexcept { return f(nearest_to_odd{}); } template static constexpr interval_type::symmetric_boundary interval_type_normal(ieee754_bits br) noexcept { return{ br.u % 2 != 0 }; } template static constexpr interval_type::closed interval_type_shorter(ieee754_bits) noexcept { return{}; } }; struct nearest_toward_plus_infinity : base { using rounding_mode_policy = nearest_toward_plus_infinity; static constexpr auto tag = tag_t::to_nearest; template static auto delegate(ieee754_bits, Func&& f) noexcept { return f(nearest_toward_plus_infinity{}); } template static constexpr interval_type::asymmetric_boundary interval_type_normal(ieee754_bits br) noexcept { return{ !br.is_negative() }; } template static constexpr interval_type::asymmetric_boundary interval_type_shorter(ieee754_bits br) noexcept { return{ !br.is_negative() }; } }; struct nearest_toward_minus_infinity : base { using rounding_mode_policy = nearest_toward_minus_infinity; static constexpr auto tag = tag_t::to_nearest; template static auto delegate(ieee754_bits, Func&& f) noexcept { return f(nearest_toward_minus_infinity{}); } template static constexpr interval_type::asymmetric_boundary interval_type_normal(ieee754_bits br) noexcept { return{ br.is_negative() }; } template static constexpr interval_type::asymmetric_boundary interval_type_shorter(ieee754_bits br) noexcept { return{ br.is_negative() }; } }; struct nearest_toward_zero : base { using rounding_mode_policy = nearest_toward_zero; static constexpr auto tag = tag_t::to_nearest; template static auto delegate(ieee754_bits, Func&& f) noexcept { return f(nearest_toward_zero{}); } template static constexpr interval_type::right_closed_left_open interval_type_normal(ieee754_bits) noexcept { return{}; } template static constexpr interval_type::right_closed_left_open interval_type_shorter(ieee754_bits) noexcept { return{}; } }; struct nearest_away_from_zero : base { using rounding_mode_policy = nearest_away_from_zero; static constexpr auto tag = tag_t::to_nearest; template static auto delegate(ieee754_bits, Func&& f) noexcept { return f(nearest_away_from_zero{}); } template static constexpr interval_type::left_closed_right_open interval_type_normal(ieee754_bits) noexcept { return{}; } template static constexpr interval_type::left_closed_right_open interval_type_shorter(ieee754_bits) noexcept { return{}; } }; namespace detail { struct nearest_always_closed { static constexpr auto tag = tag_t::to_nearest; template static constexpr interval_type::closed interval_type_normal(ieee754_bits) noexcept { return{}; } template static constexpr interval_type::closed interval_type_shorter(ieee754_bits) noexcept { return{}; } }; struct nearest_always_open { static constexpr auto tag = tag_t::to_nearest; template static constexpr interval_type::open interval_type_normal(ieee754_bits) noexcept { return{}; } template static constexpr interval_type::open interval_type_shorter(ieee754_bits) noexcept { return{}; } }; } struct nearest_to_even_static_boundary : base { using rounding_mode_policy = nearest_to_even_static_boundary; template static auto delegate(ieee754_bits br, Func&& f) noexcept { if (br.u % 2 == 0) { return f(detail::nearest_always_closed{}); } else { return f(detail::nearest_always_open{}); } } }; struct nearest_to_odd_static_boundary : base { using rounding_mode_policy = nearest_to_odd_static_boundary; template static auto delegate(ieee754_bits br, Func&& f) noexcept { if (br.u % 2 == 0) { return f(detail::nearest_always_open{}); } else { return f(detail::nearest_always_closed{}); } } }; struct nearest_toward_plus_infinity_static_boundary : base { using rounding_mode_policy = nearest_toward_plus_infinity_static_boundary; template static auto delegate(ieee754_bits br, Func&& f) noexcept { if (br.is_negative()) { return f(nearest_toward_zero{}); } else { return f(nearest_away_from_zero{}); } } }; struct nearest_toward_minus_infinity_static_boundary : base { using rounding_mode_policy = nearest_toward_minus_infinity_static_boundary; template static auto delegate(ieee754_bits br, Func&& f) noexcept { if (br.is_negative()) { return f(nearest_away_from_zero{}); } else { return f(nearest_toward_zero{}); } } }; namespace detail { struct left_closed_directed { static constexpr auto tag = tag_t::left_closed_directed; template static constexpr interval_type::left_closed_right_open interval_type_normal(ieee754_bits) noexcept { return{}; } }; struct right_closed_directed { static constexpr auto tag = tag_t::right_closed_directed; template static constexpr interval_type::right_closed_left_open interval_type_normal(ieee754_bits) noexcept { return{}; } }; } struct toward_plus_infinity : base { using rounding_mode_policy = toward_plus_infinity; template static auto delegate(ieee754_bits br, Func&& f) noexcept { if (br.is_negative()) { return f(detail::left_closed_directed{}); } else { return f(detail::right_closed_directed{}); } } }; struct toward_minus_infinity : base { using rounding_mode_policy = toward_minus_infinity; template static auto delegate(ieee754_bits br, Func&& f) noexcept { if (br.is_negative()) { return f(detail::right_closed_directed{}); } else { return f(detail::left_closed_directed{}); } } }; struct toward_zero : base { using rounding_mode_policy = toward_zero; template static auto delegate(ieee754_bits, Func&& f) noexcept { return f(detail::left_closed_directed{}); } }; struct away_from_zero : base { using rounding_mode_policy = away_from_zero; template static auto delegate(ieee754_bits, Func&& f) noexcept { return f(detail::right_closed_directed{}); } }; } // Correct rounding policy namespace correct_rounding { struct base {}; enum class tag_t { do_not_care, to_even, to_odd, away_from_zero, toward_zero }; struct do_not_care : base { using correct_rounding_policy = do_not_care; static constexpr auto tag = tag_t::do_not_care; template static constexpr void break_rounding_tie(Fp&) noexcept {} }; struct to_even : base { using correct_rounding_policy = to_even; static constexpr auto tag = tag_t::to_even; template static constexpr void break_rounding_tie(Fp& fp) noexcept { fp.significand = fp.significand % 2 == 0 ? fp.significand : fp.significand - 1; } }; struct to_odd : base { using correct_rounding_policy = to_odd; static constexpr auto tag = tag_t::to_odd; template static constexpr void break_rounding_tie(Fp& fp) noexcept { fp.significand = fp.significand % 2 != 0 ? fp.significand : fp.significand - 1; } }; struct away_from_zero : base { using correct_rounding_policy = away_from_zero; static constexpr auto tag = tag_t::away_from_zero; template static constexpr void break_rounding_tie(Fp& /*fp*/) noexcept {} }; struct toward_zero : base { using correct_rounding_policy = toward_zero; static constexpr auto tag = tag_t::toward_zero; template static constexpr void break_rounding_tie(Fp& fp) noexcept { --fp.significand; } }; } namespace cache { struct base {}; struct normal : base { using cache_policy = normal; template static constexpr typename cache_holder::cache_entry_type get_cache(int k) noexcept { assert(k >= cache_holder::min_k && k <= cache_holder::max_k); return cache_holder::cache[std::size_t(k - cache_holder::min_k)]; } }; struct compressed : base { using cache_policy = compressed; template static constexpr typename cache_holder::cache_entry_type get_cache(int k) noexcept { assert(k >= cache_holder::min_k && k <= cache_holder::max_k); if constexpr (format == ieee754_format::binary64) { // Compute base index auto cache_index = (k - cache_holder::min_k) / compressed_cache_detail::compression_ratio; auto kb = cache_index * compressed_cache_detail::compression_ratio + cache_holder::min_k; auto offset = k - kb; // Get base cache auto base_cache = compressed_cache_detail::cache.table[cache_index]; if (offset == 0) { return base_cache; } else { // Compute the required amount of bit-shift auto alpha = log::floor_log2_pow10(kb + offset) - log::floor_log2_pow10(kb) - offset; assert(alpha > 0 && alpha < 64); // Try to recover the real cache auto pow5 = compressed_cache_detail::pow5.table[offset]; auto recovered_cache = wuint::umul128(base_cache.high(), pow5); auto middle_low = wuint::umul128(base_cache.low() - (kb < 0 ? 1 : 0), pow5); recovered_cache += middle_low.high(); auto high_to_middle = recovered_cache.high() << (64 - alpha); auto middle_to_low = recovered_cache.low() << (64 - alpha); recovered_cache = wuint::uint128{ (recovered_cache.low() >> alpha) | high_to_middle, ((middle_low.low() >> alpha) | middle_to_low) }; if (kb < 0) { recovered_cache += 1; } // Get error auto error_idx = (k - cache_holder::min_k) / 16; auto error = (compressed_cache_detail::errors[error_idx] >> ((k - cache_holder::min_k) % 16) * 2) & 0x3; // Add the error back assert(recovered_cache.low() + error >= recovered_cache.low()); recovered_cache = { recovered_cache.high(), recovered_cache.low() + error }; return recovered_cache; } } else { return cache_holder::cache[std::size_t(k - cache_holder::min_k)]; } } }; } namespace input_validation { struct base {}; struct assert_finite : base { using input_validation_policy = assert_finite; template static void validate_input([[maybe_unused]] ieee754_bits br) noexcept { assert(br.is_finite()); } }; struct do_nothing : base { using input_validation_policy = do_nothing; template static void validate_input(ieee754_bits) noexcept {} }; } } } namespace policy { namespace sign { inline constexpr auto ignore = detail::policy_impl::sign::ignore{}; inline constexpr auto return_sign = detail::policy_impl::sign::return_sign{}; } namespace trailing_zero { inline constexpr auto ignore = detail::policy_impl::trailing_zero::ignore{}; inline constexpr auto remove = detail::policy_impl::trailing_zero::remove{}; inline constexpr auto report = detail::policy_impl::trailing_zero::report{}; } namespace rounding_mode { inline constexpr auto nearest_to_even = detail::policy_impl::rounding_mode::nearest_to_even{}; inline constexpr auto nearest_to_odd = detail::policy_impl::rounding_mode::nearest_to_odd{}; inline constexpr auto nearest_toward_plus_infinity = detail::policy_impl::rounding_mode::nearest_toward_plus_infinity{}; inline constexpr auto nearest_toward_minus_infinity = detail::policy_impl::rounding_mode::nearest_toward_minus_infinity{}; inline constexpr auto nearest_toward_zero = detail::policy_impl::rounding_mode::nearest_toward_zero{}; inline constexpr auto nearest_away_from_zero = detail::policy_impl::rounding_mode::nearest_away_from_zero{}; inline constexpr auto nearest_to_even_static_boundary = detail::policy_impl::rounding_mode::nearest_to_even_static_boundary{}; inline constexpr auto nearest_to_odd_static_boundary = detail::policy_impl::rounding_mode::nearest_to_odd_static_boundary{}; inline constexpr auto nearest_toward_plus_infinity_static_boundary = detail::policy_impl::rounding_mode::nearest_toward_plus_infinity_static_boundary{}; inline constexpr auto nearest_toward_minus_infinity_static_boundary = detail::policy_impl::rounding_mode::nearest_toward_minus_infinity_static_boundary{}; inline constexpr auto toward_plus_infinity = detail::policy_impl::rounding_mode::toward_plus_infinity{}; inline constexpr auto toward_minus_infinity = detail::policy_impl::rounding_mode::toward_minus_infinity{}; inline constexpr auto toward_zero = detail::policy_impl::rounding_mode::toward_zero{}; inline constexpr auto away_from_zero = detail::policy_impl::rounding_mode::away_from_zero{}; } namespace correct_rounding { inline constexpr auto do_not_care = detail::policy_impl::correct_rounding::do_not_care{}; inline constexpr auto to_even = detail::policy_impl::correct_rounding::to_even{}; inline constexpr auto to_odd = detail::policy_impl::correct_rounding::to_odd{}; inline constexpr auto away_from_zero = detail::policy_impl::correct_rounding::away_from_zero{}; inline constexpr auto toward_zero = detail::policy_impl::correct_rounding::toward_zero{}; } namespace cache { inline constexpr auto normal = detail::policy_impl::cache::normal{}; inline constexpr auto compressed = detail::policy_impl::cache::compressed{}; } namespace input_validation { inline constexpr auto assert_finite = detail::policy_impl::input_validation::assert_finite{}; inline constexpr auto do_nothing = detail::policy_impl::input_validation::do_nothing{}; } } namespace detail { //////////////////////////////////////////////////////////////////////////////////////// // The main algorithm //////////////////////////////////////////////////////////////////////////////////////// // Get sign/decimal significand/decimal exponent from // the bit representation of a floating-point number template struct impl : private ieee754_traits, private ieee754_format_info::format> { using carrier_uint = typename ieee754_traits::carrier_uint; using ieee754_traits::format; using ieee754_traits::carrier_bits; using ieee754_format_info::significand_bits; using ieee754_format_info::min_exponent; using ieee754_format_info::max_exponent; using ieee754_format_info::exponent_bias; using ieee754_format_info::decimal_digits; static constexpr int kappa = format == ieee754_format::binary32 ? 1 : 2; static_assert(kappa >= 1); static_assert(carrier_bits >= significand_bits + 2 + log::floor_log2_pow10(kappa + 1)); static constexpr int min_k = [] { constexpr auto a = -log::floor_log10_pow2_minus_log10_4_over_3( int(max_exponent - significand_bits)); constexpr auto b = -log::floor_log10_pow2( int(max_exponent - significand_bits)) + kappa; return a < b ? a : b; }(); static_assert(min_k >= cache_holder::min_k); static constexpr int max_k = [] { constexpr auto a = -log::floor_log10_pow2_minus_log10_4_over_3( int(min_exponent - significand_bits + 1)); constexpr auto b = -log::floor_log10_pow2( int(min_exponent - significand_bits)) + kappa; return a > b ? a : b; }(); static_assert(max_k <= cache_holder::max_k); using cache_entry_type = typename cache_holder::cache_entry_type; static constexpr auto cache_bits = cache_holder::cache_bits; static constexpr int max_power_of_factor_of_5 = log::floor_log5_pow2(int(significand_bits + 2)); static constexpr int divisibility_check_by_5_threshold = log::floor_log2_pow10(max_power_of_factor_of_5 + kappa + 1); static constexpr int case_fc_pm_half_lower_threshold = -kappa - log::floor_log5_pow2(kappa); static constexpr int case_fc_pm_half_upper_threshold = log::floor_log2_pow10(kappa + 1); static constexpr int case_fc_lower_threshold = -kappa - 1 - log::floor_log5_pow2(kappa + 1); static constexpr int case_fc_upper_threshold = log::floor_log2_pow10(kappa + 1); static constexpr int case_shorter_interval_left_endpoint_lower_threshold = 2; static constexpr int case_shorter_interval_left_endpoint_upper_threshold = 2 + log::floor_log2(compute_power< count_factors<5>((carrier_uint(1) << (significand_bits + 2)) - 1) + 1 >(10) / 3); static constexpr int case_shorter_interval_right_endpoint_lower_threshold = 0; static constexpr int case_shorter_interval_right_endpoint_upper_threshold = 2 + log::floor_log2(compute_power< count_factors<5>((carrier_uint(1) << (significand_bits + 1)) + 1) + 1 >(10) / 3); static constexpr int shorter_interval_tie_lower_threshold = -log::floor_log5_pow2_minus_log5_3(significand_bits + 4) - 2 - significand_bits; static constexpr int shorter_interval_tie_upper_threshold = -log::floor_log5_pow2(significand_bits + 2) - 2 - significand_bits; //// The main algorithm assumes the input is a normal/subnormal finite number template JKJ_SAFEBUFFERS static ReturnType compute_nearest(ieee754_bits const br) noexcept { ////////////////////////////////////////////////////////////////////// // Step 1: integer promotion & Schubfach multiplier calculation ////////////////////////////////////////////////////////////////////// ReturnType ret_value; SignPolicy::handle_sign(br, ret_value); auto significand = br.extract_significand_bits(); auto exponent = int(br.extract_exponent_bits()); // Deal with normal/subnormal dichotomy if (exponent != 0) { exponent += exponent_bias - significand_bits; // Shorter interval case; proceed like Schubfach if (significand == 0) { shorter_interval_case( ret_value, exponent, IntervalTypeProvider::interval_type_shorter(br)); return ret_value; } significand |= (carrier_uint(1) << significand_bits); } // Subnormal case; interval is always regular else { exponent = min_exponent - significand_bits; } auto const interval_type = IntervalTypeProvider::interval_type_normal(br); // Compute k and beta int const minus_k = log::floor_log10_pow2(exponent) - kappa; auto const cache = CachePolicy::template get_cache(-minus_k); int const beta_minus_1 = exponent + log::floor_log2_pow10(-minus_k); // Compute zi and deltai // 10^kappa <= deltai < 10^(kappa + 1) auto const deltai = compute_delta(cache, beta_minus_1); carrier_uint const two_fc = significand << 1; carrier_uint const two_fr = two_fc | 1; carrier_uint const zi = compute_mul(two_fr << beta_minus_1, cache); ////////////////////////////////////////////////////////////////////// // Step 2: Try larger divisor; remove trailing zeros if necessary ////////////////////////////////////////////////////////////////////// constexpr auto big_divisor = compute_power(std::uint32_t(10)); constexpr auto small_divisor = compute_power(std::uint32_t(10)); // Using an upper bound on zi, we might be able to optimize the division // better than the compiler; we are computing zi / big_divisor here ret_value.significand = div::divide_by_pow10(zi); auto r = std::uint32_t(zi - big_divisor * ret_value.significand); if (r > deltai) { goto small_divisor_case_label; } else if (r < deltai) { // Exclude the right endpoint if necessary if (r == 0 && !interval_type.include_right_endpoint() && is_product_integer(two_fr, exponent, minus_k)) { if constexpr (CorrectRoundingPolicy::tag == policy_impl::correct_rounding::tag_t::do_not_care) { ret_value.significand *= 10; ret_value.exponent = minus_k + kappa; --ret_value.significand; return ret_value; } else { --ret_value.significand; r = big_divisor; goto small_divisor_case_label; } } } else { // r == deltai; compare fractional parts // Check conditions in the order different from the paper // to take advantage of short-circuiting auto const two_fl = two_fc - 1; if ((!interval_type.include_left_endpoint() || !is_product_integer( two_fl, exponent, minus_k)) && !compute_mul_parity(two_fl, cache, beta_minus_1)) { goto small_divisor_case_label; } } ret_value.exponent = minus_k + kappa + 1; // We may need to remove trailing zeros TrailingZeroPolicy::on_trailing_zeros(ret_value); return ret_value; ////////////////////////////////////////////////////////////////////// // Step 3: Find the significand with the smaller divisor ////////////////////////////////////////////////////////////////////// small_divisor_case_label: TrailingZeroPolicy::no_trailing_zeros(ret_value); ret_value.significand *= 10; ret_value.exponent = minus_k + kappa; constexpr auto mask = (std::uint32_t(1) << kappa) - 1; if constexpr (CorrectRoundingPolicy::tag == policy_impl::correct_rounding::tag_t::do_not_care) { // Normally, we want to compute // ret_value.significand += r / small_divisor // and return, but we need to take care of the case that the resulting // value is exactly the right endpoint, while that is not included in the interval if (!interval_type.include_right_endpoint()) { // Is r divisible by 2^kappa? if ((r & mask) == 0) { r >>= kappa; // Is r divisible by 5^kappa? if (div::check_divisibility_and_divide_by_pow5(r) && is_product_integer(two_fr, exponent, minus_k)) { // This should be in the interval ret_value.significand += r - 1; } else { ret_value.significand += r; } } else { ret_value.significand += div::small_division_by_pow10(r); } } else { ret_value.significand += div::small_division_by_pow10(r); } } else { auto dist = r - (deltai / 2) + (small_divisor / 2); // Is dist divisible by 2^kappa? if ((dist & mask) == 0) { bool const approx_y_parity = ((dist ^ (small_divisor / 2)) & 1) != 0; dist >>= kappa; // Is dist divisible by 5^kappa? if (div::check_divisibility_and_divide_by_pow5(dist)) { ret_value.significand += dist; // Check z^(f) >= epsilon^(f) // We have either yi == zi - epsiloni or yi == (zi - epsiloni) - 1, // where yi == zi - epsiloni if and only if z^(f) >= epsilon^(f) // Since there are only 2 possibilities, we only need to care about the parity // Also, zi and r should have the same parity since the divisor // is an even number if (compute_mul_parity(two_fc, cache, beta_minus_1) != approx_y_parity) { --ret_value.significand; } else { // If z^(f) >= epsilon^(f), we might have a tie // when z^(f) == epsilon^(f), or equivalently, when y is an integer // For tie-to-up case, we can just choose the upper one if constexpr (CorrectRoundingPolicy::tag != policy_impl::correct_rounding::tag_t::away_from_zero) { if (is_product_integer( two_fc, exponent, minus_k)) { CorrectRoundingPolicy::break_rounding_tie(ret_value); } } } } // Is dist not divisible by 5^kappa? else { ret_value.significand += dist; } } // Is dist not divisible by 2^kappa? else { // Since we know dist is small, we might be able to optimize the division // better than the compiler; we are computing dist / small_divisor here ret_value.significand += div::small_division_by_pow10(dist); } } return ret_value; } template JKJ_FORCEINLINE JKJ_SAFEBUFFERS static void shorter_interval_case( ReturnType& ret_value, int const exponent, IntervalType const interval_type) noexcept { // Compute k and beta int const minus_k = log::floor_log10_pow2_minus_log10_4_over_3(exponent); int const beta_minus_1 = exponent + log::floor_log2_pow10(-minus_k); // Compute xi and zi auto const cache = CachePolicy::template get_cache(-minus_k); auto xi = compute_left_endpoint_for_shorter_interval_case(cache, beta_minus_1); auto zi = compute_right_endpoint_for_shorter_interval_case(cache, beta_minus_1); // If we don't accept the right endpoint and // if the right endpoint is an integer, decrease it if (!interval_type.include_right_endpoint() && is_right_endpoint_integer_shorter_interval(exponent)) { --zi; } // If we don't accept the left endpoint or // if the left endpoint is not an integer, increase it if (!interval_type.include_left_endpoint() || !is_left_endpoint_integer_shorter_interval(exponent)) { ++xi; } // Try bigger divisor ret_value.significand = zi / 10; // If succeed, remove trailing zeros if necessary and return if (ret_value.significand * 10 >= xi) { ret_value.exponent = minus_k + 1; TrailingZeroPolicy::on_trailing_zeros(ret_value); return; } // Otherwise, compute the round-up of y TrailingZeroPolicy::no_trailing_zeros(ret_value); ret_value.significand = compute_round_up_for_shorter_interval_case(cache, beta_minus_1); ret_value.exponent = minus_k; // When tie occurs, choose one of them according to the rule if constexpr (CorrectRoundingPolicy::tag != policy_impl::correct_rounding::tag_t::do_not_care && CorrectRoundingPolicy::tag != policy_impl::correct_rounding::tag_t::away_from_zero) { if (exponent >= shorter_interval_tie_lower_threshold && exponent <= shorter_interval_tie_upper_threshold) { CorrectRoundingPolicy::break_rounding_tie(ret_value); } else if (ret_value.significand < xi) { ++ret_value.significand; } } else { if (ret_value.significand < xi) { ++ret_value.significand; } } } template JKJ_SAFEBUFFERS static ReturnType compute_left_closed_directed(ieee754_bits const br) noexcept { ////////////////////////////////////////////////////////////////////// // Step 1: integer promotion & Schubfach multiplier calculation ////////////////////////////////////////////////////////////////////// ReturnType ret_value; SignPolicy::handle_sign(br, ret_value); auto significand = br.extract_significand_bits(); auto exponent = int(br.extract_exponent_bits()); // Deal with normal/subnormal dichotomy if (exponent != 0) { exponent += exponent_bias - significand_bits; significand |= (carrier_uint(1) << significand_bits); } // Subnormal case; interval is always regular else { exponent = min_exponent - significand_bits; } // Compute k and beta int const minus_k = log::floor_log10_pow2(exponent) - kappa; auto const cache = CachePolicy::template get_cache(-minus_k); int const beta = exponent + log::floor_log2_pow10(-minus_k) + 1; // Compute xi and deltai // 10^kappa <= deltai < 10^(kappa + 1) auto const deltai = compute_delta(cache, beta - 1); carrier_uint xi = compute_mul(significand << beta, cache); if (!is_product_integer(significand, exponent + 1, minus_k)) { ++xi; } ////////////////////////////////////////////////////////////////////// // Step 2: Try larger divisor; remove trailing zeros if necessary ////////////////////////////////////////////////////////////////////// constexpr auto big_divisor = compute_power(std::uint32_t(10)); constexpr auto small_divisor = compute_power(std::uint32_t(10)); // Using an upper bound on xi, we might be able to optimize the division // better than the compiler; we are computing xi / big_divisor here ret_value.significand = div::divide_by_pow10(xi); auto r = std::uint32_t(xi - big_divisor * ret_value.significand); if (r != 0) { ++ret_value.significand; r = big_divisor - r; } if (r > deltai) { goto small_divisor_case_label; } else if (r == deltai) { // Compare the fractional parts if (compute_mul_parity(significand + 1, cache, beta) || is_product_integer(significand + 1, exponent + 1, minus_k)) { goto small_divisor_case_label; } } // The ceiling is inside, so we are done ret_value.exponent = minus_k + kappa + 1; TrailingZeroPolicy::on_trailing_zeros(ret_value); return ret_value; ////////////////////////////////////////////////////////////////////// // Step 3: Find the significand with the smaller divisor ////////////////////////////////////////////////////////////////////// small_divisor_case_label: ret_value.significand *= 10; ret_value.significand -= div::small_division_by_pow10(r); ret_value.exponent = minus_k + kappa; TrailingZeroPolicy::no_trailing_zeros(ret_value); return ret_value; } template JKJ_SAFEBUFFERS static ReturnType compute_right_closed_directed(ieee754_bits const br) noexcept { ////////////////////////////////////////////////////////////////////// // Step 1: integer promotion & Schubfach multiplier calculation ////////////////////////////////////////////////////////////////////// ReturnType ret_value; SignPolicy::handle_sign(br, ret_value); auto significand = br.extract_significand_bits(); auto exponent = int(br.extract_exponent_bits()); // Deal with normal/subnormal dichotomy bool closer_boundary = false; if (exponent != 0) { exponent += exponent_bias - significand_bits; if (significand == 0) { closer_boundary = true; } significand |= (carrier_uint(1) << significand_bits); } // Subnormal case; interval is always regular else { exponent = min_exponent - significand_bits; } // Compute k and beta int const minus_k = log::floor_log10_pow2(exponent - (closer_boundary ? 1 : 0)) - kappa; auto const cache = CachePolicy::template get_cache(-minus_k); int const beta = exponent + log::floor_log2_pow10(-minus_k) + 1; // Compute zi and deltai // 10^kappa <= deltai < 10^(kappa + 1) auto const deltai = closer_boundary ? compute_delta(cache, beta - 2) : compute_delta(cache, beta - 1); carrier_uint const zi = compute_mul(significand << beta, cache); ////////////////////////////////////////////////////////////////////// // Step 2: Try larger divisor; remove trailing zeros if necessary ////////////////////////////////////////////////////////////////////// constexpr auto big_divisor = compute_power(std::uint32_t(10)); constexpr auto small_divisor = compute_power(std::uint32_t(10)); // Using an upper bound on zi, we might be able to optimize the division // better than the compiler; we are computing zi / big_divisor here ret_value.significand = div::divide_by_pow10(zi); auto const r = std::uint32_t(zi - big_divisor * ret_value.significand); if (r > deltai) { goto small_divisor_case_label; } else if (r == deltai) { // Compare the fractional parts if (closer_boundary) { if (!compute_mul_parity((significand * 2) - 1, cache, beta - 1)) { goto small_divisor_case_label; } } else { if (!compute_mul_parity(significand - 1, cache, beta)) { goto small_divisor_case_label; } } } // The floor is inside, so we are done ret_value.exponent = minus_k + kappa + 1; TrailingZeroPolicy::on_trailing_zeros(ret_value); return ret_value; ////////////////////////////////////////////////////////////////////// // Step 3: Find the significand with the small divisor ////////////////////////////////////////////////////////////////////// small_divisor_case_label: ret_value.significand *= 10; ret_value.significand += div::small_division_by_pow10(r); ret_value.exponent = minus_k + kappa; TrailingZeroPolicy::no_trailing_zeros(ret_value); return ret_value; } // Remove trailing zeros from n and return the number of zeros removed JKJ_FORCEINLINE static int remove_trailing_zeros(carrier_uint& n) noexcept { constexpr auto max_power = [] { auto max_possible_significand = std::numeric_limits::max() / compute_power(std::uint32_t(10)); int k = 0; carrier_uint p = 1; while (p < max_possible_significand / 10) { p *= 10; ++k; } return k; }(); auto t = bits::countr_zero(n); if (t > max_power) { t = max_power; } if constexpr (format == ieee754_format::binary32) { constexpr auto const& divtable = div::table_holder::table; int s = 0; for (; s < t - 1; s += 2) { if (n * divtable.mod_inv[2] > divtable.max_quotients[2]) { break; } n *= divtable.mod_inv[2]; } if (s < t && n * divtable.mod_inv[1] <= divtable.max_quotients[1]) { n *= divtable.mod_inv[1]; ++s; } n >>= s; return s; } else { static_assert(format == ieee754_format::binary64); static_assert(kappa >= 2); // Divide by 10^8 and reduce to 32-bits // Since ret_value.significand <= (2^64 - 1) / 1000 < 10^17, // both of the quotient and the r should fit in 32-bits constexpr auto const& divtable = div::table_holder::table; // If the number is divisible by 1'0000'0000, work with the quotient if (t >= 8) { auto quotient_candidate = n * divtable.mod_inv[8]; if (quotient_candidate <= divtable.max_quotients[8]) { auto quotient = std::uint32_t(quotient_candidate >> 8); constexpr auto mod_inverse = std::uint32_t(divtable.mod_inv[1]); constexpr auto max_quotient = std::numeric_limits::max() / 5; int s = 8; for (; s < t; ++s) { if (quotient * mod_inverse > max_quotient) { break; } quotient *= mod_inverse; } quotient >>= (s - 8); n = quotient; return s; } } // Otherwise, work with the remainder auto quotient = std::uint32_t(div::divide_by_pow10<8, 54, 0>(n)); auto remainder = std::uint32_t(n - 1'0000'0000 * quotient); constexpr auto mod_inverse = std::uint32_t(divtable.mod_inv[1]); constexpr auto max_quotient = std::numeric_limits::max() / 5; if (t == 0 || remainder * mod_inverse > max_quotient) { return 0; } remainder *= mod_inverse; if (t == 1 || remainder * mod_inverse > max_quotient) { n = (remainder >> 1) + quotient * carrier_uint(1000'0000); return 1; } remainder *= mod_inverse; if (t == 2 || remainder * mod_inverse > max_quotient) { n = (remainder >> 2) + quotient * carrier_uint(100'0000); return 2; } remainder *= mod_inverse; if (t == 3 || remainder * mod_inverse > max_quotient) { n = (remainder >> 3) + quotient * carrier_uint(10'0000); return 3; } remainder *= mod_inverse; if (t == 4 || remainder * mod_inverse > max_quotient) { n = (remainder >> 4) + quotient * carrier_uint(1'0000); return 4; } remainder *= mod_inverse; if (t == 5 || remainder * mod_inverse > max_quotient) { n = (remainder >> 5) + quotient * carrier_uint(1000); return 5; } remainder *= mod_inverse; if (t == 6 || remainder * mod_inverse > max_quotient) { n = (remainder >> 6) + quotient * carrier_uint(100); return 6; } remainder *= mod_inverse; n = (remainder >> 7) + quotient * carrier_uint(10); return 7; } } static carrier_uint compute_mul(carrier_uint u, cache_entry_type const& cache) noexcept { if constexpr (format == ieee754_format::binary32) { return wuint::umul96_upper32(u, cache); } else { return wuint::umul192_upper64(u, cache); } } static std::uint32_t compute_delta(cache_entry_type const& cache, int beta_minus_1) noexcept { if constexpr (format == ieee754_format::binary32) { return std::uint32_t(cache >> (cache_bits - 1 - beta_minus_1)); } else { return std::uint32_t(cache.high() >> (carrier_bits - 1 - beta_minus_1)); } } static bool compute_mul_parity(carrier_uint two_f, cache_entry_type const& cache, int beta_minus_1) noexcept { assert(beta_minus_1 >= 1); assert(beta_minus_1 < 64); if constexpr (format == ieee754_format::binary32) { return ((wuint::umul96_lower64(two_f, cache) >> (64 - beta_minus_1)) & 1) != 0; } else { return ((wuint::umul192_middle64(two_f, cache) >> (64 - beta_minus_1)) & 1) != 0; } } static carrier_uint compute_left_endpoint_for_shorter_interval_case( cache_entry_type const& cache, int beta_minus_1) noexcept { if constexpr (format == ieee754_format::binary32) { return carrier_uint( (cache - (cache >> (significand_bits + 2))) >> (cache_bits - significand_bits - 1 - beta_minus_1)); } else { return (cache.high() - (cache.high() >> (significand_bits + 2))) >> (carrier_bits - significand_bits - 1 - beta_minus_1); } } static carrier_uint compute_right_endpoint_for_shorter_interval_case( cache_entry_type const& cache, int beta_minus_1) noexcept { if constexpr (format == ieee754_format::binary32) { return carrier_uint( (cache + (cache >> (significand_bits + 1))) >> (cache_bits - significand_bits - 1 - beta_minus_1)); } else { return (cache.high() + (cache.high() >> (significand_bits + 1))) >> (carrier_bits - significand_bits - 1 - beta_minus_1); } } static carrier_uint compute_round_up_for_shorter_interval_case( cache_entry_type const& cache, int beta_minus_1) noexcept { if constexpr (format == ieee754_format::binary32) { return (carrier_uint(cache >> (cache_bits - significand_bits - 2 - beta_minus_1)) + 1) / 2; } else { return ((cache.high() >> (carrier_bits - significand_bits - 2 - beta_minus_1)) + 1) / 2; } } static bool is_right_endpoint_integer_shorter_interval(int exponent) noexcept { return exponent >= case_shorter_interval_right_endpoint_lower_threshold && exponent <= case_shorter_interval_right_endpoint_upper_threshold; } static bool is_left_endpoint_integer_shorter_interval(int exponent) noexcept { return exponent >= case_shorter_interval_left_endpoint_lower_threshold && exponent <= case_shorter_interval_left_endpoint_upper_threshold; } enum class integer_check_case_id { fc_pm_half, fc }; template static bool is_product_integer(carrier_uint two_f, int exponent, int minus_k) noexcept { // Case I: f = fc +- 1/2 if constexpr (case_id == integer_check_case_id::fc_pm_half) { if (exponent < case_fc_pm_half_lower_threshold) { return false; } // For k >= 0 else if (exponent <= case_fc_pm_half_upper_threshold) { return true; } // For k < 0 else if (exponent > divisibility_check_by_5_threshold) { return false; } else { return div::divisible_by_power_of_5(two_f, minus_k); } } // Case II: f = fc + 1 // Case III: f = fc else { // Exponent for 5 is negative if (exponent > divisibility_check_by_5_threshold) { return false; } else if (exponent > case_fc_upper_threshold) { return div::divisible_by_power_of_5(two_f, minus_k); } // Both exponents are nonnegative else if (exponent >= case_fc_lower_threshold) { return true; } // Exponent for 2 is negative else { return div::divisible_by_power_of_2(two_f, minus_k - exponent + 1); } } } }; //////////////////////////////////////////////////////////////////////////////////////// // Policy holder //////////////////////////////////////////////////////////////////////////////////////// namespace policy_impl { // The library will specify a list of accepted kinds of policies and their defaults, // and the user will pass a list of policies. The aim of helper classes/functions here // is to do the following: // 1. Check if the policy parameters given by the user are all valid; that means, // each of them should be of the kinds specified by the library. // If that's not the case, then the compilation fails. // 2. Check if multiple policy parameters for the same kind is specified by the user. // If that's the case, then the compilation fails. // 3. Build a class deriving from all policies the user have given, and also from // the default policies if the user did not specify one for some kinds. // A policy belongs to a certain kind if it is deriving from a base class. // For a given kind, find a policy belonging to that kind. // Check if there are more than one such policies. enum class policy_found_info { not_found, unique, repeated }; template struct found_policy_pair { using policy = Policy; static constexpr auto found_info = info; }; template struct base_default_pair { using base = Base; template static constexpr FoundPolicyInfo get_policy_impl(FoundPolicyInfo) { return{}; } template static constexpr auto get_policy_impl(FoundPolicyInfo, FirstPolicy, RemainingPolicies... remainings) { if constexpr (std::is_base_of_v) { if constexpr (FoundPolicyInfo::found_info == policy_found_info::not_found) { return get_policy_impl( found_policy_pair{}, remainings...); } else { return get_policy_impl( found_policy_pair{}, remainings...); } } else { return get_policy_impl(FoundPolicyInfo{}, remainings...); } } template static constexpr auto get_policy(Policies... policies) { return get_policy_impl( found_policy_pair{}, policies...); } }; template struct base_default_pair_list {}; // Check if a given policy belongs to one of the kinds specified by the library template constexpr bool check_policy_validity(Policy, base_default_pair_list<>) { return false; } template constexpr bool check_policy_validity(Policy, base_default_pair_list) { return std::is_base_of_v || check_policy_validity(Policy{}, base_default_pair_list< RemainingBaseDefaultPairs...>{}); } template constexpr bool check_policy_list_validity(BaseDefaultPairList) { return true; } template constexpr bool check_policy_list_validity(BaseDefaultPairList, FirstPolicy, RemainingPolicies... remaining_policies) { return check_policy_validity(FirstPolicy{}, BaseDefaultPairList{}) && check_policy_list_validity(BaseDefaultPairList{}, remaining_policies...); } // Build policy_holder template struct found_policy_pair_list { static constexpr bool repeated = repeated_; }; template struct policy_holder : Policies... {}; template constexpr auto make_policy_holder_impl( base_default_pair_list<>, found_policy_pair_list, Policies...) { return found_policy_pair_list{}; } template constexpr auto make_policy_holder_impl( base_default_pair_list, found_policy_pair_list, Policies... policies) { using new_found_policy_pair = decltype(FirstBaseDefaultPair::get_policy(policies...)); return make_policy_holder_impl( base_default_pair_list{}, found_policy_pair_list< repeated || new_found_policy_pair::found_info == policy_found_info::repeated, new_found_policy_pair, FoundPolicyPairs... >{}, policies...); } template constexpr auto convert_to_policy_holder(found_policy_pair_list, RawPolicies...) { return policy_holder{}; } template constexpr auto convert_to_policy_holder( found_policy_pair_list, RawPolicies... policies) { return convert_to_policy_holder(found_policy_pair_list{}, typename FirstFoundPolicyPair::policy{}, policies...); } template constexpr auto make_policy_holder(BaseDefaultPairList, Policies... policies) { static_assert(check_policy_list_validity(BaseDefaultPairList{}, Policies{}...), "jkj::dragonbox: an invalid policy is specified"); using policy_pair_list = decltype(make_policy_holder_impl(BaseDefaultPairList{}, found_policy_pair_list{}, policies...)); static_assert(!policy_pair_list::repeated, "jkj::dragonbox: each policy should be specified at most once"); return convert_to_policy_holder(policy_pair_list{}); } } } //////////////////////////////////////////////////////////////////////////////////////// // The interface function //////////////////////////////////////////////////////////////////////////////////////// template JKJ_SAFEBUFFERS JKJ_FORCEINLINE auto to_decimal(Float x, Policies... policies) { // Build policy holder type using namespace detail::policy_impl; using policy_holder = decltype(make_policy_holder( base_default_pair_list< base_default_pair, base_default_pair, base_default_pair, base_default_pair, base_default_pair, base_default_pair >{}, policies...)); using return_type = fp_t; auto br = ieee754_bits(x); policy_holder::validate_input(br); return policy_holder::delegate(br, [br](auto interval_type_provider) { constexpr auto tag = decltype(interval_type_provider)::tag; if constexpr (tag == rounding_mode::tag_t::to_nearest) { return detail::impl::template compute_nearest(br); } else if constexpr (tag == rounding_mode::tag_t::left_closed_directed) { return detail::impl::template compute_left_closed_directed(br); } else { return detail::impl::template compute_right_closed_directed(br); } }); } } #undef JKJ_HAS_COUNTR_ZERO_INTRINSIC #undef JKJ_FORCEINLINE #undef JKJ_SAFEBUFFERS #endif