jak-project/goal_src/jak1/engine/geometry/vol-h.gc

82 lines
3.4 KiB
Common Lisp
Raw Normal View History

;;-*-Lisp-*-
2020-09-04 14:44:23 -04:00
(in-package goal)
Dependency graph work - Part 1 - Preliminary work (#3505) Relates to #1353 This adds no new functionality or overhead to the compiler, yet. This is the preliminary work that has: - added code to the compiler in several spots to flag when something is used without being properly required/imported/whatever (disabled by default) - that was used to generate project wide file dependencies (some circulars were manually fixed) - then that graph underwent a transitive reduction and the result was written to all `jak1` source files. The next step will be making this actually produce and use a dependency graph. Some of the reasons why I'm working on this: - eliminates more `game.gp` boilerplate. This includes the `.gd` files to some extent (`*-ag` files and `tpage` files will still need to be handled) this is the point of the new `bundles` form. This should make it even easier to add a new file into the source tree. - a build order that is actually informed from something real and compiler warnings that tell you when you are using something that won't be available at build time. - narrows the search space for doing LSP actions -- like searching for references. Since it would be way too much work to store in the compiler every location where every symbol/function/etc is used, I have to do ad-hoc searches. By having a dependency graph i can significantly reduce that search space. - opens the doors for common shared code with a legitimate pattern. Right now jak 2 shares code from the jak 1 folder. This is basically a hack -- but by having an explicit require syntax, it would be possible to reference arbitrary file paths, such as a `common` folder. Some stats: - Jak 1 has about 2500 edges between files, including transitives - With transitives reduced at the source code level, each file seems to have a modest amount of explicit requirements. Known issues: - Tracking the location for where `defmacro`s and virtual state definitions were defined (and therefore the file) is still problematic. Because those forms are in a macro environment, the reader does not track them. I'm wondering if a workaround could be to search the reader's text_db by not just the `goos::Object` but by the text position. But for the purposes of finishing this work, I just statically analyzed and searched the code with throwaway python code.
2024-05-12 12:37:59 -04:00
(bundles "ENGINE.CGO" "GAME.CGO")
(require "engine/entity/res.gc")
(require "kernel/gstate.gc")
(require "engine/draw/drawable-h.gc")
(require "engine/game/main-h.gc")
(require "engine/entity/entity-h.gc")
(require "engine/game/game-h.gc")
2020-09-04 14:44:23 -04:00
decomp: finish the remainder of untouched gameplay code (#893) * decomp: finish `sidekick` * decomp: got a lot of `target` done * decompiler: Add support for non power of 2 offsets for inline arr access * decomp: finish `target` mostly * decomp: finish `water` * decomp: finished `robotboss-weapon` * decomp: finish `robotboss-misc` * decomp: finish the majority of `robotboss` * blocked: `racer` has an issue around entering a state * blocked: `target-racer` done mostly, but NYI case in one function * blocked: `racer-states` mostly finished, but bitfield issue * blocked: `billy` on state decomping * blocked: `bully` on state decomping * waiting: `rolling-lightning-mole` waiting on navigate for 2 funcs * blocked: `rolling-robber` finished but `s6-1` issue * blocked: `ogreboss` uint64's for types cant label load em! * blocked: `mother-spider` state decompilation * half-done `target-flut` * blocked: `target-flut` some sort of new bitfield state * some improvements in `racer-states` with my new-found knowledge * progress: started on `target-death` * blocked: `target-death` handle casts * decomp: finish `collide-reaction-racer` * blocked: `target-handler` handler forced to return `none` * decomp: 99% of `target2` finished * decomp: finish `target2` * gsrc: update * update post merge * address feedback * scripts: add script to detect decomp issues * fix wide-spread `collide-shape` method missing arg * some small things i changed from master * address feedback * fix typeconsistency issue
2021-11-24 00:33:10 -05:00
;; DECOMP BEGINS
(deftype plane-volume (structure)
g/j1: Cleanup all main issues in the formatter and format all of `goal_src/jak1` (#3535) This PR does two main things: 1. Work through the main low-hanging fruit issues in the formatter keeping it from feeling mature and usable 2. Iterate and prove that point by formatting all of the Jak 1 code base. **This has removed around 100K lines in total.** - The decompiler will now format it's results for jak 1 to keep things from drifting back to where they were. This is controlled by a new config flag `format_code`. How am I confident this hasn't broken anything?: - I compiled the entire project and stored it's `out/jak1/obj` files separately - I then recompiled the project after formatting and wrote a script that md5's each file and compares it (`compare-compilation-outputs.py` - The results (eventually) were the same: ![Screenshot 2024-05-25 132900](https://github.com/open-goal/jak-project/assets/13153231/015e6f20-8d19-49b7-9951-97fa88ddc6c2) > This proves that the only difference before and after is non-critical whitespace for all code/macros that is actually in use. I'm still aware of improvements that could be made to the formatter, as well as general optimization of it's performance. But in general these are for rare or non-critical situations in my opinion and I'll work through them before doing Jak 2. The vast majority looks great and is working properly at this point. Those known issues are the following if you are curious: ![image](https://github.com/open-goal/jak-project/assets/13153231/0edfaba1-6d36-40f5-ab23-0642209867c4)
2024-06-05 22:17:31 -04:00
((volume-type symbol)
(point-count int16)
(normal-count int16)
(first-point (pointer vector))
(first-normal (pointer vector))
(num-planes int32)
(plane (inline-array plane)))
:pack-me
(:methods
g/j1: Cleanup all main issues in the formatter and format all of `goal_src/jak1` (#3535) This PR does two main things: 1. Work through the main low-hanging fruit issues in the formatter keeping it from feeling mature and usable 2. Iterate and prove that point by formatting all of the Jak 1 code base. **This has removed around 100K lines in total.** - The decompiler will now format it's results for jak 1 to keep things from drifting back to where they were. This is controlled by a new config flag `format_code`. How am I confident this hasn't broken anything?: - I compiled the entire project and stored it's `out/jak1/obj` files separately - I then recompiled the project after formatting and wrote a script that md5's each file and compares it (`compare-compilation-outputs.py` - The results (eventually) were the same: ![Screenshot 2024-05-25 132900](https://github.com/open-goal/jak-project/assets/13153231/015e6f20-8d19-49b7-9951-97fa88ddc6c2) > This proves that the only difference before and after is non-critical whitespace for all code/macros that is actually in use. I'm still aware of improvements that could be made to the formatter, as well as general optimization of it's performance. But in general these are for rare or non-critical situations in my opinion and I'll work through them before doing Jak 2. The vast majority looks great and is working properly at this point. Those known issues are the following if you are curious: ![image](https://github.com/open-goal/jak-project/assets/13153231/0edfaba1-6d36-40f5-ab23-0642209867c4)
2024-06-05 22:17:31 -04:00
(init-vol! (_type_ symbol vector-array vector-array) symbol)
(debug-draw (_type_) none)
(point-in-vol? (_type_ vector float) symbol)))
decomp: finish the remainder of untouched gameplay code (#893) * decomp: finish `sidekick` * decomp: got a lot of `target` done * decompiler: Add support for non power of 2 offsets for inline arr access * decomp: finish `target` mostly * decomp: finish `water` * decomp: finished `robotboss-weapon` * decomp: finish `robotboss-misc` * decomp: finish the majority of `robotboss` * blocked: `racer` has an issue around entering a state * blocked: `target-racer` done mostly, but NYI case in one function * blocked: `racer-states` mostly finished, but bitfield issue * blocked: `billy` on state decomping * blocked: `bully` on state decomping * waiting: `rolling-lightning-mole` waiting on navigate for 2 funcs * blocked: `rolling-robber` finished but `s6-1` issue * blocked: `ogreboss` uint64's for types cant label load em! * blocked: `mother-spider` state decompilation * half-done `target-flut` * blocked: `target-flut` some sort of new bitfield state * some improvements in `racer-states` with my new-found knowledge * progress: started on `target-death` * blocked: `target-death` handle casts * decomp: finish `collide-reaction-racer` * blocked: `target-handler` handler forced to return `none` * decomp: 99% of `target2` finished * decomp: finish `target2` * gsrc: update * update post merge * address feedback * scripts: add script to detect decomp issues * fix wide-spread `collide-shape` method missing arg * some small things i changed from master * address feedback * fix typeconsistency issue
2021-11-24 00:33:10 -05:00
(deftype vol-control (basic)
g/j1: Cleanup all main issues in the formatter and format all of `goal_src/jak1` (#3535) This PR does two main things: 1. Work through the main low-hanging fruit issues in the formatter keeping it from feeling mature and usable 2. Iterate and prove that point by formatting all of the Jak 1 code base. **This has removed around 100K lines in total.** - The decompiler will now format it's results for jak 1 to keep things from drifting back to where they were. This is controlled by a new config flag `format_code`. How am I confident this hasn't broken anything?: - I compiled the entire project and stored it's `out/jak1/obj` files separately - I then recompiled the project after formatting and wrote a script that md5's each file and compares it (`compare-compilation-outputs.py` - The results (eventually) were the same: ![Screenshot 2024-05-25 132900](https://github.com/open-goal/jak-project/assets/13153231/015e6f20-8d19-49b7-9951-97fa88ddc6c2) > This proves that the only difference before and after is non-critical whitespace for all code/macros that is actually in use. I'm still aware of improvements that could be made to the formatter, as well as general optimization of it's performance. But in general these are for rare or non-critical situations in my opinion and I'll work through them before doing Jak 2. The vast majority looks great and is working properly at this point. Those known issues are the following if you are curious: ![image](https://github.com/open-goal/jak-project/assets/13153231/0edfaba1-6d36-40f5-ab23-0642209867c4)
2024-06-05 22:17:31 -04:00
((flags uint32)
(process process-drawable)
(pos-vol-count int32)
(pos-vol plane-volume 32 :inline)
(neg-vol-count int32)
(neg-vol plane-volume 32 :inline)
(debug-point vector-array)
(debug-normal vector-array))
(:methods
g/j1: Cleanup all main issues in the formatter and format all of `goal_src/jak1` (#3535) This PR does two main things: 1. Work through the main low-hanging fruit issues in the formatter keeping it from feeling mature and usable 2. Iterate and prove that point by formatting all of the Jak 1 code base. **This has removed around 100K lines in total.** - The decompiler will now format it's results for jak 1 to keep things from drifting back to where they were. This is controlled by a new config flag `format_code`. How am I confident this hasn't broken anything?: - I compiled the entire project and stored it's `out/jak1/obj` files separately - I then recompiled the project after formatting and wrote a script that md5's each file and compares it (`compare-compilation-outputs.py` - The results (eventually) were the same: ![Screenshot 2024-05-25 132900](https://github.com/open-goal/jak-project/assets/13153231/015e6f20-8d19-49b7-9951-97fa88ddc6c2) > This proves that the only difference before and after is non-critical whitespace for all code/macros that is actually in use. I'm still aware of improvements that could be made to the formatter, as well as general optimization of it's performance. But in general these are for rare or non-critical situations in my opinion and I'll work through them before doing Jak 2. The vast majority looks great and is working properly at this point. Those known issues are the following if you are curious: ![image](https://github.com/open-goal/jak-project/assets/13153231/0edfaba1-6d36-40f5-ab23-0642209867c4)
2024-06-05 22:17:31 -04:00
(new (symbol type process-drawable) _type_)
(init! (_type_) symbol)
(point-in-vol? (_type_ vector) symbol)
(vol-control-method-11 (_type_) symbol)))
decomp: finish the remainder of untouched gameplay code (#893) * decomp: finish `sidekick` * decomp: got a lot of `target` done * decompiler: Add support for non power of 2 offsets for inline arr access * decomp: finish `target` mostly * decomp: finish `water` * decomp: finished `robotboss-weapon` * decomp: finish `robotboss-misc` * decomp: finish the majority of `robotboss` * blocked: `racer` has an issue around entering a state * blocked: `target-racer` done mostly, but NYI case in one function * blocked: `racer-states` mostly finished, but bitfield issue * blocked: `billy` on state decomping * blocked: `bully` on state decomping * waiting: `rolling-lightning-mole` waiting on navigate for 2 funcs * blocked: `rolling-robber` finished but `s6-1` issue * blocked: `ogreboss` uint64's for types cant label load em! * blocked: `mother-spider` state decompilation * half-done `target-flut` * blocked: `target-flut` some sort of new bitfield state * some improvements in `racer-states` with my new-found knowledge * progress: started on `target-death` * blocked: `target-death` handle casts * decomp: finish `collide-reaction-racer` * blocked: `target-handler` handler forced to return `none` * decomp: 99% of `target2` finished * decomp: finish `target2` * gsrc: update * update post merge * address feedback * scripts: add script to detect decomp issues * fix wide-spread `collide-shape` method missing arg * some small things i changed from master * address feedback * fix typeconsistency issue
2021-11-24 00:33:10 -05:00
(defmethod new vol-control ((allocation symbol) (type-to-make type) (arg0 process-drawable))
(let ((gp-0 (the-as object (object-new allocation type-to-make (the-as int (-> type-to-make size))))))
(when (zero? (the-as vol-control gp-0))
(go process-drawable-art-error "memory")
(set! gp-0 0)
g/j1: Cleanup all main issues in the formatter and format all of `goal_src/jak1` (#3535) This PR does two main things: 1. Work through the main low-hanging fruit issues in the formatter keeping it from feeling mature and usable 2. Iterate and prove that point by formatting all of the Jak 1 code base. **This has removed around 100K lines in total.** - The decompiler will now format it's results for jak 1 to keep things from drifting back to where they were. This is controlled by a new config flag `format_code`. How am I confident this hasn't broken anything?: - I compiled the entire project and stored it's `out/jak1/obj` files separately - I then recompiled the project after formatting and wrote a script that md5's each file and compares it (`compare-compilation-outputs.py` - The results (eventually) were the same: ![Screenshot 2024-05-25 132900](https://github.com/open-goal/jak-project/assets/13153231/015e6f20-8d19-49b7-9951-97fa88ddc6c2) > This proves that the only difference before and after is non-critical whitespace for all code/macros that is actually in use. I'm still aware of improvements that could be made to the formatter, as well as general optimization of it's performance. But in general these are for rare or non-critical situations in my opinion and I'll work through them before doing Jak 2. The vast majority looks great and is working properly at this point. Those known issues are the following if you are curious: ![image](https://github.com/open-goal/jak-project/assets/13153231/0edfaba1-6d36-40f5-ab23-0642209867c4)
2024-06-05 22:17:31 -04:00
(goto cfg-13))
(set! (-> (the-as vol-control gp-0) process) arg0)
(let* ((s5-1 (the-as res-lump (-> (the-as vol-control gp-0) process entity)))
g/j1: Cleanup all main issues in the formatter and format all of `goal_src/jak1` (#3535) This PR does two main things: 1. Work through the main low-hanging fruit issues in the formatter keeping it from feeling mature and usable 2. Iterate and prove that point by formatting all of the Jak 1 code base. **This has removed around 100K lines in total.** - The decompiler will now format it's results for jak 1 to keep things from drifting back to where they were. This is controlled by a new config flag `format_code`. How am I confident this hasn't broken anything?: - I compiled the entire project and stored it's `out/jak1/obj` files separately - I then recompiled the project after formatting and wrote a script that md5's each file and compares it (`compare-compilation-outputs.py` - The results (eventually) were the same: ![Screenshot 2024-05-25 132900](https://github.com/open-goal/jak-project/assets/13153231/015e6f20-8d19-49b7-9951-97fa88ddc6c2) > This proves that the only difference before and after is non-critical whitespace for all code/macros that is actually in use. I'm still aware of improvements that could be made to the formatter, as well as general optimization of it's performance. But in general these are for rare or non-critical situations in my opinion and I'll work through them before doing Jak 2. The vast majority looks great and is working properly at this point. Those known issues are the following if you are curious: ![image](https://github.com/open-goal/jak-project/assets/13153231/0edfaba1-6d36-40f5-ab23-0642209867c4)
2024-06-05 22:17:31 -04:00
(s4-0 (-> ((method-of-type res-lump lookup-tag-idx) (the-as entity-actor s5-1) 'vol 'exact 0.0) lo)))
(when (>= (the-as int s4-0) 0)
(let ((s3-0 (the-as int s4-0))
g/j1: Cleanup all main issues in the formatter and format all of `goal_src/jak1` (#3535) This PR does two main things: 1. Work through the main low-hanging fruit issues in the formatter keeping it from feeling mature and usable 2. Iterate and prove that point by formatting all of the Jak 1 code base. **This has removed around 100K lines in total.** - The decompiler will now format it's results for jak 1 to keep things from drifting back to where they were. This is controlled by a new config flag `format_code`. How am I confident this hasn't broken anything?: - I compiled the entire project and stored it's `out/jak1/obj` files separately - I then recompiled the project after formatting and wrote a script that md5's each file and compares it (`compare-compilation-outputs.py` - The results (eventually) were the same: ![Screenshot 2024-05-25 132900](https://github.com/open-goal/jak-project/assets/13153231/015e6f20-8d19-49b7-9951-97fa88ddc6c2) > This proves that the only difference before and after is non-critical whitespace for all code/macros that is actually in use. I'm still aware of improvements that could be made to the formatter, as well as general optimization of it's performance. But in general these are for rare or non-critical situations in my opinion and I'll work through them before doing Jak 2. The vast majority looks great and is working properly at this point. Those known issues are the following if you are curious: ![image](https://github.com/open-goal/jak-project/assets/13153231/0edfaba1-6d36-40f5-ab23-0642209867c4)
2024-06-05 22:17:31 -04:00
(s2-0 (-> s5-1 tag s4-0)))
0
(while (= (-> s2-0 name) (-> s5-1 tag s4-0 name))
(let ((v1-12 (make-property-data s5-1 0.0 (the-as res-tag-pair s3-0) (the-as pointer #f)))
g/j1: Cleanup all main issues in the formatter and format all of `goal_src/jak1` (#3535) This PR does two main things: 1. Work through the main low-hanging fruit issues in the formatter keeping it from feeling mature and usable 2. Iterate and prove that point by formatting all of the Jak 1 code base. **This has removed around 100K lines in total.** - The decompiler will now format it's results for jak 1 to keep things from drifting back to where they were. This is controlled by a new config flag `format_code`. How am I confident this hasn't broken anything?: - I compiled the entire project and stored it's `out/jak1/obj` files separately - I then recompiled the project after formatting and wrote a script that md5's each file and compares it (`compare-compilation-outputs.py` - The results (eventually) were the same: ![Screenshot 2024-05-25 132900](https://github.com/open-goal/jak-project/assets/13153231/015e6f20-8d19-49b7-9951-97fa88ddc6c2) > This proves that the only difference before and after is non-critical whitespace for all code/macros that is actually in use. I'm still aware of improvements that could be made to the formatter, as well as general optimization of it's performance. But in general these are for rare or non-critical situations in my opinion and I'll work through them before doing Jak 2. The vast majority looks great and is working properly at this point. Those known issues are the following if you are curious: ![image](https://github.com/open-goal/jak-project/assets/13153231/0edfaba1-6d36-40f5-ab23-0642209867c4)
2024-06-05 22:17:31 -04:00
(a0-8 (-> (the-as vol-control gp-0) pos-vol (-> (the-as vol-control gp-0) pos-vol-count))))
(set! (-> a0-8 num-planes) (the-as int (-> s2-0 elt-count)))
g/j1: Cleanup all main issues in the formatter and format all of `goal_src/jak1` (#3535) This PR does two main things: 1. Work through the main low-hanging fruit issues in the formatter keeping it from feeling mature and usable 2. Iterate and prove that point by formatting all of the Jak 1 code base. **This has removed around 100K lines in total.** - The decompiler will now format it's results for jak 1 to keep things from drifting back to where they were. This is controlled by a new config flag `format_code`. How am I confident this hasn't broken anything?: - I compiled the entire project and stored it's `out/jak1/obj` files separately - I then recompiled the project after formatting and wrote a script that md5's each file and compares it (`compare-compilation-outputs.py` - The results (eventually) were the same: ![Screenshot 2024-05-25 132900](https://github.com/open-goal/jak-project/assets/13153231/015e6f20-8d19-49b7-9951-97fa88ddc6c2) > This proves that the only difference before and after is non-critical whitespace for all code/macros that is actually in use. I'm still aware of improvements that could be made to the formatter, as well as general optimization of it's performance. But in general these are for rare or non-critical situations in my opinion and I'll work through them before doing Jak 2. The vast majority looks great and is working properly at this point. Those known issues are the following if you are curious: ![image](https://github.com/open-goal/jak-project/assets/13153231/0edfaba1-6d36-40f5-ab23-0642209867c4)
2024-06-05 22:17:31 -04:00
(set! (-> a0-8 plane) (the-as (inline-array plane) v1-12)))
(+! (-> (the-as vol-control gp-0) pos-vol-count) 1)
(+! s3-0 1)
g/j1: Cleanup all main issues in the formatter and format all of `goal_src/jak1` (#3535) This PR does two main things: 1. Work through the main low-hanging fruit issues in the formatter keeping it from feeling mature and usable 2. Iterate and prove that point by formatting all of the Jak 1 code base. **This has removed around 100K lines in total.** - The decompiler will now format it's results for jak 1 to keep things from drifting back to where they were. This is controlled by a new config flag `format_code`. How am I confident this hasn't broken anything?: - I compiled the entire project and stored it's `out/jak1/obj` files separately - I then recompiled the project after formatting and wrote a script that md5's each file and compares it (`compare-compilation-outputs.py` - The results (eventually) were the same: ![Screenshot 2024-05-25 132900](https://github.com/open-goal/jak-project/assets/13153231/015e6f20-8d19-49b7-9951-97fa88ddc6c2) > This proves that the only difference before and after is non-critical whitespace for all code/macros that is actually in use. I'm still aware of improvements that could be made to the formatter, as well as general optimization of it's performance. But in general these are for rare or non-critical situations in my opinion and I'll work through them before doing Jak 2. The vast majority looks great and is working properly at this point. Those known issues are the following if you are curious: ![image](https://github.com/open-goal/jak-project/assets/13153231/0edfaba1-6d36-40f5-ab23-0642209867c4)
2024-06-05 22:17:31 -04:00
(set! s2-0 (-> s5-1 tag s3-0))))))
(let* ((s5-2 (the-as res-lump (-> (the-as vol-control gp-0) process entity)))
g/j1: Cleanup all main issues in the formatter and format all of `goal_src/jak1` (#3535) This PR does two main things: 1. Work through the main low-hanging fruit issues in the formatter keeping it from feeling mature and usable 2. Iterate and prove that point by formatting all of the Jak 1 code base. **This has removed around 100K lines in total.** - The decompiler will now format it's results for jak 1 to keep things from drifting back to where they were. This is controlled by a new config flag `format_code`. How am I confident this hasn't broken anything?: - I compiled the entire project and stored it's `out/jak1/obj` files separately - I then recompiled the project after formatting and wrote a script that md5's each file and compares it (`compare-compilation-outputs.py` - The results (eventually) were the same: ![Screenshot 2024-05-25 132900](https://github.com/open-goal/jak-project/assets/13153231/015e6f20-8d19-49b7-9951-97fa88ddc6c2) > This proves that the only difference before and after is non-critical whitespace for all code/macros that is actually in use. I'm still aware of improvements that could be made to the formatter, as well as general optimization of it's performance. But in general these are for rare or non-critical situations in my opinion and I'll work through them before doing Jak 2. The vast majority looks great and is working properly at this point. Those known issues are the following if you are curious: ![image](https://github.com/open-goal/jak-project/assets/13153231/0edfaba1-6d36-40f5-ab23-0642209867c4)
2024-06-05 22:17:31 -04:00
(s4-1 (-> ((method-of-type res-lump lookup-tag-idx) (the-as entity-actor s5-2) 'cutoutvol 'exact 0.0) lo)))
(when (>= (the-as int s4-1) 0)
(let ((s3-1 (the-as int s4-1))
g/j1: Cleanup all main issues in the formatter and format all of `goal_src/jak1` (#3535) This PR does two main things: 1. Work through the main low-hanging fruit issues in the formatter keeping it from feeling mature and usable 2. Iterate and prove that point by formatting all of the Jak 1 code base. **This has removed around 100K lines in total.** - The decompiler will now format it's results for jak 1 to keep things from drifting back to where they were. This is controlled by a new config flag `format_code`. How am I confident this hasn't broken anything?: - I compiled the entire project and stored it's `out/jak1/obj` files separately - I then recompiled the project after formatting and wrote a script that md5's each file and compares it (`compare-compilation-outputs.py` - The results (eventually) were the same: ![Screenshot 2024-05-25 132900](https://github.com/open-goal/jak-project/assets/13153231/015e6f20-8d19-49b7-9951-97fa88ddc6c2) > This proves that the only difference before and after is non-critical whitespace for all code/macros that is actually in use. I'm still aware of improvements that could be made to the formatter, as well as general optimization of it's performance. But in general these are for rare or non-critical situations in my opinion and I'll work through them before doing Jak 2. The vast majority looks great and is working properly at this point. Those known issues are the following if you are curious: ![image](https://github.com/open-goal/jak-project/assets/13153231/0edfaba1-6d36-40f5-ab23-0642209867c4)
2024-06-05 22:17:31 -04:00
(s2-1 (-> s5-2 tag s4-1)))
0
(while (= (-> s2-1 name) (-> s5-2 tag s4-1 name))
(let ((v1-31 (make-property-data s5-2 0.0 (the-as res-tag-pair s3-1) (the-as pointer #f)))
g/j1: Cleanup all main issues in the formatter and format all of `goal_src/jak1` (#3535) This PR does two main things: 1. Work through the main low-hanging fruit issues in the formatter keeping it from feeling mature and usable 2. Iterate and prove that point by formatting all of the Jak 1 code base. **This has removed around 100K lines in total.** - The decompiler will now format it's results for jak 1 to keep things from drifting back to where they were. This is controlled by a new config flag `format_code`. How am I confident this hasn't broken anything?: - I compiled the entire project and stored it's `out/jak1/obj` files separately - I then recompiled the project after formatting and wrote a script that md5's each file and compares it (`compare-compilation-outputs.py` - The results (eventually) were the same: ![Screenshot 2024-05-25 132900](https://github.com/open-goal/jak-project/assets/13153231/015e6f20-8d19-49b7-9951-97fa88ddc6c2) > This proves that the only difference before and after is non-critical whitespace for all code/macros that is actually in use. I'm still aware of improvements that could be made to the formatter, as well as general optimization of it's performance. But in general these are for rare or non-critical situations in my opinion and I'll work through them before doing Jak 2. The vast majority looks great and is working properly at this point. Those known issues are the following if you are curious: ![image](https://github.com/open-goal/jak-project/assets/13153231/0edfaba1-6d36-40f5-ab23-0642209867c4)
2024-06-05 22:17:31 -04:00
(a0-19 (-> (the-as vol-control gp-0) neg-vol (-> (the-as vol-control gp-0) neg-vol-count))))
(set! (-> a0-19 num-planes) (the-as int (-> s2-1 elt-count)))
g/j1: Cleanup all main issues in the formatter and format all of `goal_src/jak1` (#3535) This PR does two main things: 1. Work through the main low-hanging fruit issues in the formatter keeping it from feeling mature and usable 2. Iterate and prove that point by formatting all of the Jak 1 code base. **This has removed around 100K lines in total.** - The decompiler will now format it's results for jak 1 to keep things from drifting back to where they were. This is controlled by a new config flag `format_code`. How am I confident this hasn't broken anything?: - I compiled the entire project and stored it's `out/jak1/obj` files separately - I then recompiled the project after formatting and wrote a script that md5's each file and compares it (`compare-compilation-outputs.py` - The results (eventually) were the same: ![Screenshot 2024-05-25 132900](https://github.com/open-goal/jak-project/assets/13153231/015e6f20-8d19-49b7-9951-97fa88ddc6c2) > This proves that the only difference before and after is non-critical whitespace for all code/macros that is actually in use. I'm still aware of improvements that could be made to the formatter, as well as general optimization of it's performance. But in general these are for rare or non-critical situations in my opinion and I'll work through them before doing Jak 2. The vast majority looks great and is working properly at this point. Those known issues are the following if you are curious: ![image](https://github.com/open-goal/jak-project/assets/13153231/0edfaba1-6d36-40f5-ab23-0642209867c4)
2024-06-05 22:17:31 -04:00
(set! (-> a0-19 plane) (the-as (inline-array plane) v1-31)))
(+! (-> (the-as vol-control gp-0) neg-vol-count) 1)
(+! s3-1 1)
g/j1: Cleanup all main issues in the formatter and format all of `goal_src/jak1` (#3535) This PR does two main things: 1. Work through the main low-hanging fruit issues in the formatter keeping it from feeling mature and usable 2. Iterate and prove that point by formatting all of the Jak 1 code base. **This has removed around 100K lines in total.** - The decompiler will now format it's results for jak 1 to keep things from drifting back to where they were. This is controlled by a new config flag `format_code`. How am I confident this hasn't broken anything?: - I compiled the entire project and stored it's `out/jak1/obj` files separately - I then recompiled the project after formatting and wrote a script that md5's each file and compares it (`compare-compilation-outputs.py` - The results (eventually) were the same: ![Screenshot 2024-05-25 132900](https://github.com/open-goal/jak-project/assets/13153231/015e6f20-8d19-49b7-9951-97fa88ddc6c2) > This proves that the only difference before and after is non-critical whitespace for all code/macros that is actually in use. I'm still aware of improvements that could be made to the formatter, as well as general optimization of it's performance. But in general these are for rare or non-critical situations in my opinion and I'll work through them before doing Jak 2. The vast majority looks great and is working properly at this point. Those known issues are the following if you are curious: ![image](https://github.com/open-goal/jak-project/assets/13153231/0edfaba1-6d36-40f5-ab23-0642209867c4)
2024-06-05 22:17:31 -04:00
(set! s2-1 (-> s5-2 tag s3-1))))))
(label cfg-13)
g/j1: Cleanup all main issues in the formatter and format all of `goal_src/jak1` (#3535) This PR does two main things: 1. Work through the main low-hanging fruit issues in the formatter keeping it from feeling mature and usable 2. Iterate and prove that point by formatting all of the Jak 1 code base. **This has removed around 100K lines in total.** - The decompiler will now format it's results for jak 1 to keep things from drifting back to where they were. This is controlled by a new config flag `format_code`. How am I confident this hasn't broken anything?: - I compiled the entire project and stored it's `out/jak1/obj` files separately - I then recompiled the project after formatting and wrote a script that md5's each file and compares it (`compare-compilation-outputs.py` - The results (eventually) were the same: ![Screenshot 2024-05-25 132900](https://github.com/open-goal/jak-project/assets/13153231/015e6f20-8d19-49b7-9951-97fa88ddc6c2) > This proves that the only difference before and after is non-critical whitespace for all code/macros that is actually in use. I'm still aware of improvements that could be made to the formatter, as well as general optimization of it's performance. But in general these are for rare or non-critical situations in my opinion and I'll work through them before doing Jak 2. The vast majority looks great and is working properly at this point. Those known issues are the following if you are curious: ![image](https://github.com/open-goal/jak-project/assets/13153231/0edfaba1-6d36-40f5-ab23-0642209867c4)
2024-06-05 22:17:31 -04:00
(the-as vol-control gp-0)))
`deftype` and `defmethod` syntax major changes (#3094) Major change to how `deftype` shows up in our code: - the decompiler will no longer emit the `offset-assert`, `method-count-assert`, `size-assert` and `flag-assert` parameters. There are extremely few cases where having this in the decompiled code is helpful, as the types there come from `all-types` which already has those parameters. This also doesn't break type consistency because: - the asserts aren't compared. - the first step of the test uses `all-types`, which has the asserts, which will throw an error if they're bad. - the decompiler won't emit the `heap-base` parameter unless necessary now. - the decompiler will try its hardest to turn a fixed-offset field into an `overlay-at` field. It falls back to the old offset if all else fails. - `overlay-at` now supports field "dereferencing" to specify the offset that's within a field that's a structure, e.g.: ```lisp (deftype foobar (structure) ((vec vector :inline) (flags int32 :overlay-at (-> vec w)) ) ) ``` in this structure, the offset of `flags` will be 12 because that is the final offset of `vec`'s `w` field within this structure. - **removed ID from all method declarations.** IDs are only ever automatically assigned now. Fixes #3068. - added an `:overlay` parameter to method declarations, in order to declare a new method that goes on top of a previously-defined method. Syntax is `:overlay <method-name>`. Please do not ever use this. - added `state-methods` list parameter. This lets you quickly specify a list of states to be put in the method table. Same syntax as the `states` list parameter. The decompiler will try to put as many states in this as it can without messing with the method ID order. Also changes `defmethod` to make the first type definition (before the arguments) optional. The type can now be inferred from the first argument. Fixes #3093. --------- Co-authored-by: Hat Kid <6624576+Hat-Kid@users.noreply.github.com>
2023-10-29 23:20:02 -04:00
(defmethod vol-control-method-11 ((this vol-control))
g/j1: Cleanup all main issues in the formatter and format all of `goal_src/jak1` (#3535) This PR does two main things: 1. Work through the main low-hanging fruit issues in the formatter keeping it from feeling mature and usable 2. Iterate and prove that point by formatting all of the Jak 1 code base. **This has removed around 100K lines in total.** - The decompiler will now format it's results for jak 1 to keep things from drifting back to where they were. This is controlled by a new config flag `format_code`. How am I confident this hasn't broken anything?: - I compiled the entire project and stored it's `out/jak1/obj` files separately - I then recompiled the project after formatting and wrote a script that md5's each file and compares it (`compare-compilation-outputs.py` - The results (eventually) were the same: ![Screenshot 2024-05-25 132900](https://github.com/open-goal/jak-project/assets/13153231/015e6f20-8d19-49b7-9951-97fa88ddc6c2) > This proves that the only difference before and after is non-critical whitespace for all code/macros that is actually in use. I'm still aware of improvements that could be made to the formatter, as well as general optimization of it's performance. But in general these are for rare or non-critical situations in my opinion and I'll work through them before doing Jak 2. The vast majority looks great and is working properly at this point. Those known issues are the following if you are curious: ![image](https://github.com/open-goal/jak-project/assets/13153231/0edfaba1-6d36-40f5-ab23-0642209867c4)
2024-06-05 22:17:31 -04:00
(and *display-vol-marks* (logtest? (-> this flags) 1)))