jak-project/third-party/magic_enum.hpp

1388 lines
55 KiB
C++
Raw Permalink Normal View History

// __ __ _ ______ _____
// | \/ | (_) | ____| / ____|_ _
// | \ / | __ _ __ _ _ ___ | |__ _ __ _ _ _ __ ___ | | _| |_ _| |_
// | |\/| |/ _` |/ _` | |/ __| | __| | '_ \| | | | '_ ` _ \ | | |_ _|_ _|
// | | | | (_| | (_| | | (__ | |____| | | | |_| | | | | | | | |____|_| |_|
// |_| |_|\__,_|\__, |_|\___| |______|_| |_|\__,_|_| |_| |_| \_____|
// __/ | https://github.com/Neargye/magic_enum
// |___/ version 0.8.1
//
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
// SPDX-License-Identifier: MIT
// Copyright (c) 2019 - 2022 Daniil Goncharov <neargye@gmail.com>.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef NEARGYE_MAGIC_ENUM_HPP
#define NEARGYE_MAGIC_ENUM_HPP
#define MAGIC_ENUM_VERSION_MAJOR 0
#define MAGIC_ENUM_VERSION_MINOR 8
#define MAGIC_ENUM_VERSION_PATCH 1
#include <array>
#include <cassert>
#include <cstdint>
#include <cstddef>
#include <iosfwd>
#include <limits>
#include <type_traits>
#include <utility>
#include <variant>
#if defined(MAGIC_ENUM_CONFIG_FILE)
#include MAGIC_ENUM_CONFIG_FILE
#endif
#if !defined(MAGIC_ENUM_USING_ALIAS_OPTIONAL)
#include <optional>
#endif
#if !defined(MAGIC_ENUM_USING_ALIAS_STRING)
#include <string>
#endif
#if !defined(MAGIC_ENUM_USING_ALIAS_STRING_VIEW)
#include <string_view>
#endif
#if defined(__clang__)
# pragma clang diagnostic push
#elif defined(__GNUC__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wmaybe-uninitialized" // May be used uninitialized 'return {};'.
#elif defined(_MSC_VER)
# pragma warning(push)
# pragma warning(disable : 26495) // Variable 'static_string<N>::chars_' is uninitialized.
# pragma warning(disable : 28020) // Arithmetic overflow: Using operator '-' on a 4 byte value and then casting the result to a 8 byte value.
# pragma warning(disable : 26451) // The expression '0<=_Param_(1)&&_Param_(1)<=1-1' is not true at this call.
# pragma warning(disable : 4514) // Unreferenced inline function has been removed.
#endif
// Checks magic_enum compiler compatibility.
#if defined(__clang__) && __clang_major__ >= 5 || defined(__GNUC__) && __GNUC__ >= 9 || defined(_MSC_VER) && _MSC_VER >= 1910
# undef MAGIC_ENUM_SUPPORTED
# define MAGIC_ENUM_SUPPORTED 1
#endif
// Checks magic_enum compiler aliases compatibility.
#if defined(__clang__) && __clang_major__ >= 5 || defined(__GNUC__) && __GNUC__ >= 9 || defined(_MSC_VER) && _MSC_VER >= 1920
# undef MAGIC_ENUM_SUPPORTED_ALIASES
# define MAGIC_ENUM_SUPPORTED_ALIASES 1
#endif
// Enum value must be greater or equals than MAGIC_ENUM_RANGE_MIN. By default MAGIC_ENUM_RANGE_MIN = -128.
// If need another min range for all enum types by default, redefine the macro MAGIC_ENUM_RANGE_MIN.
#if !defined(MAGIC_ENUM_RANGE_MIN)
# define MAGIC_ENUM_RANGE_MIN -128
#endif
// Enum value must be less or equals than MAGIC_ENUM_RANGE_MAX. By default MAGIC_ENUM_RANGE_MAX = 128.
// If need another max range for all enum types by default, redefine the macro MAGIC_ENUM_RANGE_MAX.
#if !defined(MAGIC_ENUM_RANGE_MAX)
# define MAGIC_ENUM_RANGE_MAX 128
#endif
namespace magic_enum {
// If need another optional type, define the macro MAGIC_ENUM_USING_ALIAS_OPTIONAL.
#if defined(MAGIC_ENUM_USING_ALIAS_OPTIONAL)
MAGIC_ENUM_USING_ALIAS_OPTIONAL
#else
using std::optional;
#endif
// If need another string_view type, define the macro MAGIC_ENUM_USING_ALIAS_STRING_VIEW.
#if defined(MAGIC_ENUM_USING_ALIAS_STRING_VIEW)
MAGIC_ENUM_USING_ALIAS_STRING_VIEW
#else
using std::string_view;
#endif
// If need another string type, define the macro MAGIC_ENUM_USING_ALIAS_STRING.
#if defined(MAGIC_ENUM_USING_ALIAS_STRING)
MAGIC_ENUM_USING_ALIAS_STRING
#else
using std::string;
#endif
namespace customize {
// Enum value must be in range [MAGIC_ENUM_RANGE_MIN, MAGIC_ENUM_RANGE_MAX]. By default MAGIC_ENUM_RANGE_MIN = -128, MAGIC_ENUM_RANGE_MAX = 128.
// If need another range for all enum types by default, redefine the macro MAGIC_ENUM_RANGE_MIN and MAGIC_ENUM_RANGE_MAX.
// If need another range for specific enum type, add specialization enum_range for necessary enum type.
template <typename E>
struct enum_range {
static_assert(std::is_enum_v<E>, "magic_enum::customize::enum_range requires enum type.");
static constexpr int min = MAGIC_ENUM_RANGE_MIN;
static constexpr int max = MAGIC_ENUM_RANGE_MAX;
static_assert(max > min, "magic_enum::customize::enum_range requires max > min.");
};
static_assert(MAGIC_ENUM_RANGE_MAX > MAGIC_ENUM_RANGE_MIN, "MAGIC_ENUM_RANGE_MAX must be greater than MAGIC_ENUM_RANGE_MIN.");
static_assert((MAGIC_ENUM_RANGE_MAX - MAGIC_ENUM_RANGE_MIN) < (std::numeric_limits<std::uint16_t>::max)(), "MAGIC_ENUM_RANGE must be less than UINT16_MAX.");
namespace detail {
enum class default_customize_tag {};
enum class invalid_customize_tag {};
} // namespace magic_enum::customize::detail
using customize_t = std::variant<string_view, detail::default_customize_tag, detail::invalid_customize_tag>;
// Default customize.
inline constexpr auto default_tag = detail::default_customize_tag{};
// Invalid customize.
inline constexpr auto invalid_tag = detail::invalid_customize_tag{};
// If need custom names for enum, add specialization enum_name for necessary enum type.
template <typename E>
constexpr customize_t enum_name(E) noexcept {
return default_tag;
}
// If need custom type name for enum, add specialization enum_type_name for necessary enum type.
template <typename E>
constexpr customize_t enum_type_name() noexcept {
return default_tag;
}
} // namespace magic_enum::customize
namespace detail {
template <auto V, typename = std::enable_if_t<std::is_enum_v<std::decay_t<decltype(V)>>>>
using enum_constant = std::integral_constant<std::decay_t<decltype(V)>, V>;
template <typename... T>
inline constexpr bool always_false_v = false;
template <typename T>
struct supported
#if defined(MAGIC_ENUM_SUPPORTED) && MAGIC_ENUM_SUPPORTED || defined(MAGIC_ENUM_NO_CHECK_SUPPORT)
: std::true_type {};
#else
: std::false_type {};
#endif
template <typename T, typename = void>
struct has_is_flags : std::false_type {};
template <typename T>
struct has_is_flags<T, std::void_t<decltype(customize::enum_range<T>::is_flags)>> : std::bool_constant<std::is_same_v<bool, std::decay_t<decltype(customize::enum_range<T>::is_flags)>>> {};
template <typename T, typename = void>
struct range_min : std::integral_constant<int, MAGIC_ENUM_RANGE_MIN> {};
template <typename T>
struct range_min<T, std::void_t<decltype(customize::enum_range<T>::min)>> : std::integral_constant<decltype(customize::enum_range<T>::min), customize::enum_range<T>::min> {};
template <typename T, typename = void>
struct range_max : std::integral_constant<int, MAGIC_ENUM_RANGE_MAX> {};
template <typename T>
struct range_max<T, std::void_t<decltype(customize::enum_range<T>::max)>> : std::integral_constant<decltype(customize::enum_range<T>::max), customize::enum_range<T>::max> {};
template <std::size_t N>
class static_string {
public:
constexpr explicit static_string(string_view str) noexcept : static_string{str, std::make_index_sequence<N>{}} {
assert(str.size() == N);
}
constexpr const char* data() const noexcept { return chars_; }
constexpr std::size_t size() const noexcept { return N; }
constexpr operator string_view() const noexcept { return {data(), size()}; }
private:
template <std::size_t... I>
constexpr static_string(string_view str, std::index_sequence<I...>) noexcept : chars_{str[I]..., '\0'} {}
char chars_[N + 1];
};
template <>
class static_string<0> {
public:
constexpr explicit static_string() = default;
constexpr explicit static_string(string_view) noexcept {}
constexpr const char* data() const noexcept { return nullptr; }
constexpr std::size_t size() const noexcept { return 0; }
constexpr operator string_view() const noexcept { return {}; }
};
constexpr string_view pretty_name(string_view name) noexcept {
for (std::size_t i = name.size(); i > 0; --i) {
if (!((name[i - 1] >= '0' && name[i - 1] <= '9') ||
(name[i - 1] >= 'a' && name[i - 1] <= 'z') ||
(name[i - 1] >= 'A' && name[i - 1] <= 'Z') ||
#if defined(MAGIC_ENUM_ENABLE_NONASCII)
(name[i - 1] & 0x80) ||
#endif
(name[i - 1] == '_'))) {
name.remove_prefix(i);
break;
}
}
if (name.size() > 0 && ((name.front() >= 'a' && name.front() <= 'z') ||
(name.front() >= 'A' && name.front() <= 'Z') ||
#if defined(MAGIC_ENUM_ENABLE_NONASCII)
(name.front() & 0x80) ||
#endif
(name.front() == '_'))) {
return name;
}
return {}; // Invalid name.
}
class case_insensitive {
static constexpr char to_lower(char c) noexcept {
return (c >= 'A' && c <= 'Z') ? static_cast<char>(c + ('a' - 'A')) : c;
}
public:
template <typename L, typename R>
constexpr auto operator()([[maybe_unused]] L lhs, [[maybe_unused]] R rhs) const noexcept -> std::enable_if_t<std::is_same_v<std::decay_t<L>, char> && std::is_same_v<std::decay_t<R>, char>, bool> {
#if defined(MAGIC_ENUM_ENABLE_NONASCII)
static_assert(always_false_v<L, R>, "magic_enum::case_insensitive not supported Non-ASCII feature.");
return false;
#else
return to_lower(lhs) == to_lower(rhs);
#endif
}
};
constexpr std::size_t find(string_view str, char c) noexcept {
#if defined(__clang__) && __clang_major__ < 9 && defined(__GLIBCXX__) || defined(_MSC_VER) && _MSC_VER < 1920 && !defined(__clang__)
// https://stackoverflow.com/questions/56484834/constexpr-stdstring-viewfind-last-of-doesnt-work-on-clang-8-with-libstdc
// https://developercommunity.visualstudio.com/content/problem/360432/vs20178-regression-c-failed-in-test.html
constexpr bool workaround = true;
#else
constexpr bool workaround = false;
#endif
if constexpr (workaround) {
for (std::size_t i = 0; i < str.size(); ++i) {
if (str[i] == c) {
return i;
}
}
return string_view::npos;
} else {
return str.find_first_of(c);
}
}
template <typename T, std::size_t N, std::size_t... I>
constexpr std::array<std::remove_cv_t<T>, N> to_array(T (&a)[N], std::index_sequence<I...>) noexcept {
return {{a[I]...}};
}
template <typename BinaryPredicate>
constexpr bool is_default_predicate() noexcept {
return std::is_same_v<std::decay_t<BinaryPredicate>, std::equal_to<string_view::value_type>> ||
std::is_same_v<std::decay_t<BinaryPredicate>, std::equal_to<>>;
}
template <typename BinaryPredicate>
constexpr bool is_nothrow_invocable() {
return is_default_predicate<BinaryPredicate>() ||
std::is_nothrow_invocable_r_v<bool, BinaryPredicate, char, char>;
}
template <typename BinaryPredicate>
constexpr bool cmp_equal(string_view lhs, string_view rhs, [[maybe_unused]] BinaryPredicate&& p) noexcept(is_nothrow_invocable<BinaryPredicate>()) {
#if defined(_MSC_VER) && _MSC_VER < 1920 && !defined(__clang__)
// https://developercommunity.visualstudio.com/content/problem/360432/vs20178-regression-c-failed-in-test.html
// https://developercommunity.visualstudio.com/content/problem/232218/c-constexpr-string-view.html
constexpr bool workaround = true;
#else
constexpr bool workaround = false;
#endif
if constexpr (!is_default_predicate<BinaryPredicate>() || workaround) {
if (lhs.size() != rhs.size()) {
return false;
}
const auto size = lhs.size();
for (std::size_t i = 0; i < size; ++i) {
if (!p(lhs[i], rhs[i])) {
return false;
}
}
return true;
} else {
return lhs == rhs;
}
}
template <typename L, typename R>
constexpr bool cmp_less(L lhs, R rhs) noexcept {
static_assert(std::is_integral_v<L> && std::is_integral_v<R>, "magic_enum::detail::cmp_less requires integral type.");
if constexpr (std::is_signed_v<L> == std::is_signed_v<R>) {
// If same signedness (both signed or both unsigned).
return lhs < rhs;
} else if constexpr (std::is_same_v<L, bool>) { // bool special case
return static_cast<R>(lhs) < rhs;
} else if constexpr (std::is_same_v<R, bool>) { // bool special case
return lhs < static_cast<L>(rhs);
} else if constexpr (std::is_signed_v<R>) {
// If 'right' is negative, then result is 'false', otherwise cast & compare.
return rhs > 0 && lhs < static_cast<std::make_unsigned_t<R>>(rhs);
} else {
// If 'left' is negative, then result is 'true', otherwise cast & compare.
return lhs < 0 || static_cast<std::make_unsigned_t<L>>(lhs) < rhs;
}
}
template <typename I>
constexpr I log2(I value) noexcept {
static_assert(std::is_integral_v<I>, "magic_enum::detail::log2 requires integral type.");
if constexpr (std::is_same_v<I, bool>) { // bool special case
return assert(false), value;
} else {
auto ret = I{0};
for (; value > I{1}; value >>= I{1}, ++ret) {}
return ret;
}
}
template <typename T>
inline constexpr bool is_enum_v = std::is_enum_v<T> && std::is_same_v<T, std::decay_t<T>>;
template <typename E>
constexpr auto n() noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::n requires enum type.");
[[maybe_unused]] constexpr auto custom = customize::enum_type_name<E>();
static_assert(std::is_same_v<std::decay_t<decltype(custom)>, customize::customize_t>, "magic_enum::customize requires customize_t type.");
if constexpr (custom.index() == 0) {
constexpr auto name = std::get<string_view>(custom);
static_assert(!name.empty(), "magic_enum::customize requires not empty string.");
return static_string<name.size()>{name};
} else if constexpr (custom.index() == 1 && supported<E>::value) {
#if defined(__clang__) || defined(__GNUC__)
constexpr auto name = pretty_name({__PRETTY_FUNCTION__, sizeof(__PRETTY_FUNCTION__) - 2});
#elif defined(_MSC_VER)
constexpr auto name = pretty_name({__FUNCSIG__, sizeof(__FUNCSIG__) - 17});
#else
constexpr auto name = string_view{};
#endif
return static_string<name.size()>{name};
} else {
return static_string<0>{}; // Unsupported compiler or Invalid customize.
}
}
template <typename E>
inline constexpr auto type_name_v = n<E>();
template <typename E, E V>
constexpr auto n() noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::n requires enum type.");
[[maybe_unused]] constexpr auto custom = customize::enum_name<E>(V);
static_assert(std::is_same_v<std::decay_t<decltype(custom)>, customize::customize_t>, "magic_enum::customize requires customize_t type.");
if constexpr (custom.index() == 0) {
constexpr auto name = std::get<string_view>(custom);
static_assert(!name.empty(), "magic_enum::customize requires not empty string.");
return static_string<name.size()>{name};
} else if constexpr (custom.index() == 1 && supported<E>::value) {
#if defined(__clang__) || defined(__GNUC__)
constexpr auto name = pretty_name({__PRETTY_FUNCTION__, sizeof(__PRETTY_FUNCTION__) - 2});
#elif defined(_MSC_VER)
constexpr auto name = pretty_name({__FUNCSIG__, sizeof(__FUNCSIG__) - 17});
#else
constexpr auto name = string_view{};
#endif
return static_string<name.size()>{name};
} else {
return static_string<0>{}; // Unsupported compiler or Invalid customize.
}
}
template <typename E, E V>
inline constexpr auto enum_name_v = n<E, V>();
template <typename E, auto V>
constexpr bool is_valid() noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::is_valid requires enum type.");
return n<E, static_cast<E>(V)>().size() != 0;
}
template <typename E, int O, bool IsFlags, typename U = std::underlying_type_t<E>>
constexpr E value(std::size_t i) noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::value requires enum type.");
if constexpr (std::is_same_v<U, bool>) { // bool special case
static_assert(O == 0, "magic_enum::detail::value requires valid offset.");
return static_cast<E>(i);
} else if constexpr (IsFlags) {
return static_cast<E>(U{1} << static_cast<U>(static_cast<int>(i) + O));
} else {
return static_cast<E>(static_cast<int>(i) + O);
}
}
template <typename E, bool IsFlags, typename U = std::underlying_type_t<E>>
constexpr int reflected_min() noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::reflected_min requires enum type.");
if constexpr (IsFlags) {
return 0;
} else {
constexpr auto lhs = range_min<E>::value;
constexpr auto rhs = (std::numeric_limits<U>::min)();
if constexpr (cmp_less(rhs, lhs)) {
return lhs;
} else {
return rhs;
}
}
}
template <typename E, bool IsFlags, typename U = std::underlying_type_t<E>>
constexpr int reflected_max() noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::reflected_max requires enum type.");
if constexpr (IsFlags) {
return std::numeric_limits<U>::digits - 1;
} else {
constexpr auto lhs = range_max<E>::value;
constexpr auto rhs = (std::numeric_limits<U>::max)();
if constexpr (cmp_less(lhs, rhs)) {
return lhs;
} else {
return rhs;
}
}
}
template <typename E, bool IsFlags>
inline constexpr auto reflected_min_v = reflected_min<E, IsFlags>();
template <typename E, bool IsFlags>
inline constexpr auto reflected_max_v = reflected_max<E, IsFlags>();
template <std::size_t N>
constexpr std::size_t values_count(const bool (&valid)[N]) noexcept {
auto count = std::size_t{0};
for (std::size_t i = 0; i < N; ++i) {
if (valid[i]) {
++count;
}
}
return count;
}
template <typename E, bool IsFlags, int Min, std::size_t... I>
constexpr auto values(std::index_sequence<I...>) noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::values requires enum type.");
constexpr bool valid[sizeof...(I)] = {is_valid<E, value<E, Min, IsFlags>(I)>()...};
constexpr std::size_t count = values_count(valid);
if constexpr (count > 0) {
E values[count] = {};
for (std::size_t i = 0, v = 0; v < count; ++i) {
if (valid[i]) {
values[v++] = value<E, Min, IsFlags>(i);
}
}
return to_array(values, std::make_index_sequence<count>{});
} else {
return std::array<E, 0>{};
}
}
template <typename E, bool IsFlags, typename U = std::underlying_type_t<E>>
constexpr auto values() noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::values requires enum type.");
constexpr auto min = reflected_min_v<E, IsFlags>;
constexpr auto max = reflected_max_v<E, IsFlags>;
constexpr auto range_size = max - min + 1;
static_assert(range_size > 0, "magic_enum::enum_range requires valid size.");
static_assert(range_size < (std::numeric_limits<std::uint16_t>::max)(), "magic_enum::enum_range requires valid size.");
return values<E, IsFlags, reflected_min_v<E, IsFlags>>(std::make_index_sequence<range_size>{});
}
template <typename E, typename U = std::underlying_type_t<E>>
constexpr bool is_flags_enum() noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::is_flags_enum requires enum type.");
if constexpr (has_is_flags<E>::value) {
return customize::enum_range<E>::is_flags;
} else if constexpr (std::is_same_v<U, bool>) { // bool special case
return false;
} else {
#if defined(MAGIC_ENUM_NO_CHECK_FLAGS)
return false;
#else
constexpr auto flags_values = values<E, true>();
constexpr auto default_values = values<E, false>();
if (flags_values.size() == 0 || default_values.size() > flags_values.size()) {
return false;
}
for (std::size_t i = 0; i < default_values.size(); ++i) {
const auto v = static_cast<U>(default_values[i]);
if (v != 0 && (v & (v - 1)) != 0) {
return false;
}
}
return flags_values.size() > 0;
#endif
}
}
template <typename E>
inline constexpr bool is_flags_v = is_flags_enum<E>();
template <typename E>
inline constexpr std::array values_v = values<E, is_flags_v<E>>();
template <typename E, typename D = std::decay_t<E>>
using values_t = decltype((values_v<D>));
template <typename E>
inline constexpr auto count_v = values_v<E>.size();
template <typename E, typename U = std::underlying_type_t<E>>
inline constexpr auto min_v = (count_v<E> > 0) ? static_cast<U>(values_v<E>.front()) : U{0};
template <typename E, typename U = std::underlying_type_t<E>>
inline constexpr auto max_v = (count_v<E> > 0) ? static_cast<U>(values_v<E>.back()) : U{0};
template <typename E, std::size_t... I>
constexpr auto names(std::index_sequence<I...>) noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::names requires enum type.");
return std::array<string_view, sizeof...(I)>{{enum_name_v<E, values_v<E>[I]>...}};
}
template <typename E>
inline constexpr std::array names_v = names<E>(std::make_index_sequence<count_v<E>>{});
template <typename E, typename D = std::decay_t<E>>
using names_t = decltype((names_v<D>));
template <typename E, std::size_t... I>
constexpr auto entries(std::index_sequence<I...>) noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::entries requires enum type.");
return std::array<std::pair<E, string_view>, sizeof...(I)>{{{values_v<E>[I], enum_name_v<E, values_v<E>[I]>}...}};
}
template <typename E>
inline constexpr std::array entries_v = entries<E>(std::make_index_sequence<count_v<E>>{});
template <typename E, typename D = std::decay_t<E>>
using entries_t = decltype((entries_v<D>));
template <typename E, typename U = std::underlying_type_t<E>>
constexpr bool is_sparse() noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::is_sparse requires enum type.");
if constexpr (count_v<E> == 0) {
return false;
} else if constexpr (std::is_same_v<U, bool>) { // bool special case
return false;
} else {
constexpr auto max = is_flags_v<E> ? log2(max_v<E>) : max_v<E>;
constexpr auto min = is_flags_v<E> ? log2(min_v<E>) : min_v<E>;
constexpr auto range_size = max - min + 1;
return range_size != count_v<E>;
}
}
template <typename E>
inline constexpr bool is_sparse_v = is_sparse<E>();
template <typename E, typename U = std::underlying_type_t<E>>
constexpr U values_ors() noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::values_ors requires enum type.");
auto ors = U{0};
for (std::size_t i = 0; i < count_v<E>; ++i) {
ors |= static_cast<U>(values_v<E>[i]);
}
return ors;
}
template <bool, typename R>
struct enable_if_enum {};
template <typename R>
struct enable_if_enum<true, R> {
using type = R;
static_assert(supported<R>::value, "magic_enum unsupported compiler (https://github.com/Neargye/magic_enum#compiler-compatibility).");
};
template <typename T, typename R, typename BinaryPredicate = std::equal_to<>>
using enable_if_t = typename enable_if_enum<std::is_enum_v<std::decay_t<T>> && std::is_invocable_r_v<bool, BinaryPredicate, char, char>, R>::type;
template <typename T, typename Enable = std::enable_if_t<std::is_enum_v<std::decay_t<T>>>>
using enum_concept = T;
template <typename T, bool = std::is_enum_v<T>>
struct is_scoped_enum : std::false_type {};
template <typename T>
struct is_scoped_enum<T, true> : std::bool_constant<!std::is_convertible_v<T, std::underlying_type_t<T>>> {};
template <typename T, bool = std::is_enum_v<T>>
struct is_unscoped_enum : std::false_type {};
template <typename T>
struct is_unscoped_enum<T, true> : std::bool_constant<std::is_convertible_v<T, std::underlying_type_t<T>>> {};
template <typename T, bool = std::is_enum_v<std::decay_t<T>>>
struct underlying_type {};
template <typename T>
struct underlying_type<T, true> : std::underlying_type<std::decay_t<T>> {};
template <typename Value, typename = void>
struct constexpr_hash_t;
template <typename Value>
struct constexpr_hash_t<Value, std::enable_if_t<is_enum_v<Value>>> {
constexpr auto operator()(Value value) const noexcept {
using U = typename underlying_type<Value>::type;
if constexpr (std::is_same_v<U, bool>) { // bool special case
return static_cast<std::size_t>(value);
} else {
return static_cast<U>(value);
}
}
using secondary_hash = constexpr_hash_t;
};
template <typename Value>
struct constexpr_hash_t<Value, std::enable_if_t<std::is_same_v<Value, string_view>>> {
static constexpr std::uint32_t crc_table[256] {
0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L, 0x706af48fL, 0xe963a535L, 0x9e6495a3L,
0x0edb8832L, 0x79dcb8a4L, 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L, 0x90bf1d91L,
0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L,
0x136c9856L, 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, 0xfa0f3d63L, 0x8d080df5L,
0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L, 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L, 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L,
0x26d930acL, 0x51de003aL, 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 0xb8bda50fL,
0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL,
0x76dc4190L, 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL, 0x9fbfe4a5L, 0xe8b8d433L,
0x7807c9a2L, 0x0f00f934L, 0x9609a88eL, 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L,
0x65b0d9c6L, 0x12b7e950L, 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L, 0xfbd44c65L,
0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L, 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL,
0x4369e96aL, 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, 0xaa0a4c5fL, 0xdd0d7cc9L,
0x5005713cL, 0x270241aaL, 0xbe0b1010L, 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L, 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL,
0xedb88320L, 0x9abfb3b6L, 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L, 0x73dc1683L,
0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L, 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L,
0xf00f9344L, 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL, 0x196c3671L, 0x6e6b06e7L,
0xfed41b76L, 0x89d32be0L, 0x10da7a5aL, 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L, 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL,
0xd80d2bdaL, 0xaf0a1b4cL, 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 0x4669be79L,
0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL,
0xc5ba3bbeL, 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L, 0x2cd99e8bL, 0x5bdeae1dL,
0x9b64c2b0L, 0xec63f226L, 0x756aa39cL, 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL, 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L,
0x86d3d2d4L, 0xf1d4e242L, 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L, 0x18b74777L,
0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL, 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L,
0xa00ae278L, 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, 0x4969474dL, 0x3e6e77dbL,
0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L, 0xcdd70693L, 0x54de5729L, 0x23d967bfL,
0xb3667a2eL, 0xc4614ab8L, 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL, 0x2d02ef8dL
};
constexpr std::uint32_t operator()(string_view value) const noexcept {
auto crc = static_cast<std::uint32_t>(0xffffffffL);
for (const auto c : value) {
crc = (crc >> 8) ^ crc_table[(crc ^ static_cast<std::uint32_t>(c)) & 0xff];
}
return crc ^ 0xffffffffL;
}
struct secondary_hash {
constexpr std::uint32_t operator()(string_view value) const noexcept {
auto acc = static_cast<std::uint64_t>(2166136261ULL);
for (const auto c : value) {
acc = ((acc ^ static_cast<std::uint64_t>(c)) * static_cast<std::uint64_t>(16777619ULL)) & (std::numeric_limits<std::uint32_t>::max)();
}
return static_cast<std::uint32_t>(acc);
}
};
};
template <typename Hash>
constexpr static Hash hash_v{};
template <auto* GlobValues, typename Hash>
constexpr auto calculate_cases(std::size_t Page) noexcept {
constexpr std::array values = *GlobValues;
constexpr std::size_t size = values.size();
using switch_t = std::invoke_result_t<Hash, typename decltype(values)::value_type>;
static_assert(std::is_integral_v<switch_t> && !std::is_same_v<switch_t, bool>);
const std::size_t values_to = (std::min)(static_cast<std::size_t>(256), size - Page);
std::array<switch_t, 256> result{};
auto fill = result.begin();
{
auto first = values.begin() + static_cast<std::ptrdiff_t>(Page);
auto last = values.begin() + static_cast<std::ptrdiff_t>(Page + values_to);
while (first != last) {
*fill++ = hash_v<Hash>(*first++);
}
}
// dead cases, try to avoid case collisions
for (switch_t last_value = result[values_to - 1]; fill != result.end() && last_value != (std::numeric_limits<switch_t>::max)(); *fill++ = ++last_value) {
}
{
auto it = result.begin();
auto last_value = (std::numeric_limits<switch_t>::min)();
for (; fill != result.end(); *fill++ = last_value++) {
while (last_value == *it) {
++last_value, ++it;
}
}
}
return result;
}
template <typename R, typename F, typename... Args>
constexpr R invoke_r(F&& f, Args&&... args) noexcept(std::is_nothrow_invocable_r_v<R, F, Args...>) {
if constexpr (std::is_void_v<R>) {
std::forward<F>(f)(std::forward<Args>(args)...);
} else {
return static_cast<R>(std::forward<F>(f)(std::forward<Args>(args)...));
}
}
enum class case_call_t {
index, value
};
template <typename T = void>
inline constexpr auto default_result_type_lambda = []() noexcept(std::is_nothrow_default_constructible_v<T>) { return T{}; };
template <>
inline constexpr auto default_result_type_lambda<void> = []() noexcept {};
template <auto* Arr, typename Hash>
constexpr bool no_duplicate() noexcept {
using value_t = std::decay_t<decltype((*Arr)[0])>;
using hash_value_t = std::invoke_result_t<Hash, value_t>;
std::array<hash_value_t, Arr->size()> hashes{};
std::size_t size = 0;
for (auto elem : *Arr) {
hashes[size] = hash_v<Hash>(elem);
for (auto i = size++; i > 0; --i) {
if (hashes[i] < hashes[i - 1]) {
auto tmp = hashes[i];
hashes[i] = hashes[i - 1];
hashes[i - 1] = tmp;
} else if (hashes[i] == hashes[i - 1]) {
return false;
} else {
break;
}
}
}
return true;
}
#define MAGIC_ENUM_FOR_EACH_256(T) T(0)T(1)T(2)T(3)T(4)T(5)T(6)T(7)T(8)T(9)T(10)T(11)T(12)T(13)T(14)T(15)T(16)T(17)T(18)T(19)T(20)T(21)T(22)T(23)T(24)T(25)T(26)T(27)T(28)T(29)T(30)T(31) \
T(32)T(33)T(34)T(35)T(36)T(37)T(38)T(39)T(40)T(41)T(42)T(43)T(44)T(45)T(46)T(47)T(48)T(49)T(50)T(51)T(52)T(53)T(54)T(55)T(56)T(57)T(58)T(59)T(60)T(61)T(62)T(63) \
T(64)T(65)T(66)T(67)T(68)T(69)T(70)T(71)T(72)T(73)T(74)T(75)T(76)T(77)T(78)T(79)T(80)T(81)T(82)T(83)T(84)T(85)T(86)T(87)T(88)T(89)T(90)T(91)T(92)T(93)T(94)T(95) \
T(96)T(97)T(98)T(99)T(100)T(101)T(102)T(103)T(104)T(105)T(106)T(107)T(108)T(109)T(110)T(111)T(112)T(113)T(114)T(115)T(116)T(117)T(118)T(119)T(120)T(121)T(122)T(123)T(124)T(125)T(126)T(127) \
T(128)T(129)T(130)T(131)T(132)T(133)T(134)T(135)T(136)T(137)T(138)T(139)T(140)T(141)T(142)T(143)T(144)T(145)T(146)T(147)T(148)T(149)T(150)T(151)T(152)T(153)T(154)T(155)T(156)T(157)T(158)T(159) \
T(160)T(161)T(162)T(163)T(164)T(165)T(166)T(167)T(168)T(169)T(170)T(171)T(172)T(173)T(174)T(175)T(176)T(177)T(178)T(179)T(180)T(181)T(182)T(183)T(184)T(185)T(186)T(187)T(188)T(189)T(190)T(191) \
T(192)T(193)T(194)T(195)T(196)T(197)T(198)T(199)T(200)T(201)T(202)T(203)T(204)T(205)T(206)T(207)T(208)T(209)T(210)T(211)T(212)T(213)T(214)T(215)T(216)T(217)T(218)T(219)T(220)T(221)T(222)T(223) \
T(224)T(225)T(226)T(227)T(228)T(229)T(230)T(231)T(232)T(233)T(234)T(235)T(236)T(237)T(238)T(239)T(240)T(241)T(242)T(243)T(244)T(245)T(246)T(247)T(248)T(249)T(250)T(251)T(252)T(253)T(254)T(255)
#define MAGIC_ENUM_CASE(val) \
case cases[val]: \
if constexpr ((val) + Page < size) { \
if (!pred(values[val + Page], searched)) { \
break; \
} \
if constexpr (CallValue == case_call_t::index) { \
if constexpr (std::is_invocable_r_v<result_t, Lambda, std::integral_constant<std::size_t, val + Page>>) { \
return detail::invoke_r<result_t>(std::forward<Lambda>(lambda), std::integral_constant<std::size_t, val + Page>{}); \
} else if constexpr (std::is_invocable_v<Lambda, std::integral_constant<std::size_t, val + Page>>) { \
assert(false && "magic_enum::detail::constexpr_switch wrong result type."); \
} \
} else if constexpr (CallValue == case_call_t::value) { \
if constexpr (std::is_invocable_r_v<result_t, Lambda, enum_constant<values[val + Page]>>) { \
return detail::invoke_r<result_t>(std::forward<Lambda>(lambda), enum_constant<values[val + Page]>{}); \
} else if constexpr (std::is_invocable_r_v<result_t, Lambda, enum_constant<values[val + Page]>>) { \
assert(false && "magic_enum::detail::constexpr_switch wrong result type."); \
} \
} \
break; \
} else [[fallthrough]];
template <auto* GlobValues,
case_call_t CallValue,
std::size_t Page = 0,
typename Hash = constexpr_hash_t<typename std::decay_t<decltype(*GlobValues)>::value_type>,
typename Lambda, typename ResultGetterType = decltype(default_result_type_lambda<>),
typename BinaryPredicate = std::equal_to<>>
constexpr std::invoke_result_t<ResultGetterType> constexpr_switch(
Lambda&& lambda,
typename std::decay_t<decltype(*GlobValues)>::value_type searched,
ResultGetterType&& def = default_result_type_lambda<>,
BinaryPredicate&& pred = {}) {
using result_t = std::invoke_result_t<ResultGetterType>;
using hash_t = std::conditional_t<no_duplicate<GlobValues, Hash>(), Hash, typename Hash::secondary_hash>;
constexpr std::array values = *GlobValues;
constexpr std::size_t size = values.size();
constexpr std::array cases = calculate_cases<GlobValues, hash_t>(Page);
switch (hash_v<hash_t>(searched)) {
MAGIC_ENUM_FOR_EACH_256(MAGIC_ENUM_CASE)
default:
if constexpr (size > 256 + Page) {
return constexpr_switch<GlobValues, CallValue, Page + 256, Hash>(std::forward<Lambda>(lambda), searched, std::forward<ResultGetterType>(def));
}
break;
}
return def();
}
#undef MAGIC_ENUM_FOR_EACH_256
#undef MAGIC_ENUM_CASE
template <typename E, typename Lambda, std::size_t... I>
constexpr auto for_each(Lambda&& lambda, std::index_sequence<I...>) {
static_assert(is_enum_v<E>, "magic_enum::detail::for_each requires enum type.");
constexpr bool has_void_return = (std::is_void_v<std::invoke_result_t<Lambda, enum_constant<values_v<E>[I]>>> || ...);
constexpr bool all_same_return = (std::is_same_v<std::invoke_result_t<Lambda, enum_constant<values_v<E>[0]>>, std::invoke_result_t<Lambda, enum_constant<values_v<E>[I]>>> && ...);
if constexpr (has_void_return) {
(lambda(enum_constant<values_v<E>[I]>{}), ...);
} else if constexpr (all_same_return) {
return std::array{lambda(enum_constant<values_v<E>[I]>{})...};
} else {
return std::tuple{lambda(enum_constant<values_v<E>[I]>{})...};
}
}
} // namespace magic_enum::detail
// Checks is magic_enum supported compiler.
inline constexpr bool is_magic_enum_supported = detail::supported<void>::value;
template <typename T>
using Enum = detail::enum_concept<T>;
// Checks whether T is an Unscoped enumeration type.
// Provides the member constant value which is equal to true, if T is an [Unscoped enumeration](https://en.cppreference.com/w/cpp/language/enum#Unscoped_enumeration) type. Otherwise, value is equal to false.
template <typename T>
struct is_unscoped_enum : detail::is_unscoped_enum<T> {};
template <typename T>
inline constexpr bool is_unscoped_enum_v = is_unscoped_enum<T>::value;
// Checks whether T is an Scoped enumeration type.
// Provides the member constant value which is equal to true, if T is an [Scoped enumeration](https://en.cppreference.com/w/cpp/language/enum#Scoped_enumerations) type. Otherwise, value is equal to false.
template <typename T>
struct is_scoped_enum : detail::is_scoped_enum<T> {};
template <typename T>
inline constexpr bool is_scoped_enum_v = is_scoped_enum<T>::value;
// If T is a complete enumeration type, provides a member typedef type that names the underlying type of T.
// Otherwise, if T is not an enumeration type, there is no member type. Otherwise (T is an incomplete enumeration type), the program is ill-formed.
template <typename T>
struct underlying_type : detail::underlying_type<T> {};
template <typename T>
using underlying_type_t = typename underlying_type<T>::type;
template <auto V>
using enum_constant = detail::enum_constant<V>;
// Returns type name of enum.
template <typename E>
[[nodiscard]] constexpr auto enum_type_name() noexcept -> detail::enable_if_t<E, string_view> {
constexpr string_view name = detail::type_name_v<std::decay_t<E>>;
static_assert(!name.empty(), "magic_enum::enum_type_name enum type does not have a name.");
return name;
}
// Returns number of enum values.
template <typename E>
[[nodiscard]] constexpr auto enum_count() noexcept -> detail::enable_if_t<E, std::size_t> {
return detail::count_v<std::decay_t<E>>;
}
// Returns enum value at specified index.
// No bounds checking is performed: the behavior is undefined if index >= number of enum values.
template <typename E>
[[nodiscard]] constexpr auto enum_value(std::size_t index) noexcept -> detail::enable_if_t<E, std::decay_t<E>> {
using D = std::decay_t<E>;
if constexpr (detail::is_sparse_v<D>) {
return assert((index < detail::count_v<D>)), detail::values_v<D>[index];
} else {
constexpr bool is_flag = detail::is_flags_v<D>;
constexpr auto min = is_flag ? detail::log2(detail::min_v<D>) : detail::min_v<D>;
return assert((index < detail::count_v<D>)), detail::value<D, min, is_flag>(index);
}
}
// Returns enum value at specified index.
template <typename E, std::size_t I>
[[nodiscard]] constexpr auto enum_value() noexcept -> detail::enable_if_t<E, std::decay_t<E>> {
using D = std::decay_t<E>;
static_assert(I < detail::count_v<D>, "magic_enum::enum_value out of range.");
return enum_value<D>(I);
}
// Returns std::array with enum values, sorted by enum value.
template <typename E>
[[nodiscard]] constexpr auto enum_values() noexcept -> detail::enable_if_t<E, detail::values_t<E>> {
return detail::values_v<std::decay_t<E>>;
}
// Returns integer value from enum value.
template <typename E>
[[nodiscard]] constexpr auto enum_integer(E value) noexcept -> detail::enable_if_t<E, underlying_type_t<E>> {
return static_cast<underlying_type_t<E>>(value);
}
// Returns underlying value from enum value.
template <typename E>
[[nodiscard]] constexpr auto enum_underlying(E value) noexcept -> detail::enable_if_t<E, underlying_type_t<E>> {
return static_cast<underlying_type_t<E>>(value);
}
// Obtains index in enum values from enum value.
// Returns optional with index.
template <typename E>
[[nodiscard]] constexpr auto enum_index(E value) noexcept -> detail::enable_if_t<E, optional<std::size_t>> {
using D = std::decay_t<E>;
using U = underlying_type_t<D>;
if constexpr (detail::count_v<D> == 0) {
return {}; // Empty enum.
} else if constexpr (detail::is_sparse_v<D> || detail::is_flags_v<D>) {
return detail::constexpr_switch<&detail::values_v<D>, detail::case_call_t::index>(
[](std::size_t i) { return optional<std::size_t>{i}; },
value,
detail::default_result_type_lambda<optional<std::size_t>>);
} else {
const auto v = static_cast<U>(value);
if (v >= detail::min_v<D> && v <= detail::max_v<D>) {
return static_cast<std::size_t>(v - detail::min_v<D>);
}
return {}; // Invalid value or out of range.
}
}
// Obtains index in enum values from static storage enum variable.
template <auto V>
[[nodiscard]] constexpr auto enum_index() noexcept -> detail::enable_if_t<decltype(V), std::size_t> {
constexpr auto index = enum_index<std::decay_t<decltype(V)>>(V);
static_assert(index, "magic_enum::enum_index enum value does not have a index.");
return *index;
}
// Returns name from static storage enum variable.
// This version is much lighter on the compile times and is not restricted to the enum_range limitation.
template <auto V>
[[nodiscard]] constexpr auto enum_name() noexcept -> detail::enable_if_t<decltype(V), string_view> {
constexpr string_view name = detail::enum_name_v<std::decay_t<decltype(V)>, V>;
static_assert(!name.empty(), "magic_enum::enum_name enum value does not have a name.");
return name;
}
// Returns name from enum value.
// If enum value does not have name or value out of range, returns empty string.
template <typename E>
[[nodiscard]] constexpr auto enum_name(E value) noexcept -> detail::enable_if_t<E, string_view> {
using D = std::decay_t<E>;
if (const auto i = enum_index<D>(value)) {
return detail::names_v<D>[*i];
}
return {};
}
// Returns name from enum-flags value.
// If enum-flags value does not have name or value out of range, returns empty string.
template <typename E>
[[nodiscard]] auto enum_flags_name(E value) -> detail::enable_if_t<E, string> {
using D = std::decay_t<E>;
using U = underlying_type_t<D>;
if constexpr (detail::is_flags_v<D>) {
string name;
auto check_value = U{0};
for (std::size_t i = 0; i < detail::count_v<D>; ++i) {
if (const auto v = static_cast<U>(enum_value<D>(i)); (static_cast<U>(value) & v) != 0) {
check_value |= v;
const auto n = detail::names_v<D>[i];
if (!name.empty()) {
name.append(1, '|');
}
name.append(n.data(), n.size());
}
}
if (check_value != 0 && check_value == static_cast<U>(value)) {
return name;
}
return {}; // Invalid value or out of range.
} else {
return string{enum_name<D>(value)};
}
}
// Returns std::array with names, sorted by enum value.
template <typename E>
[[nodiscard]] constexpr auto enum_names() noexcept -> detail::enable_if_t<E, detail::names_t<E>> {
return detail::names_v<std::decay_t<E>>;
}
// Returns std::array with pairs (value, name), sorted by enum value.
template <typename E>
[[nodiscard]] constexpr auto enum_entries() noexcept -> detail::enable_if_t<E, detail::entries_t<E>> {
return detail::entries_v<std::decay_t<E>>;
}
// Allows you to write magic_enum::enum_cast<foo>("bar", magic_enum::case_insensitive);
inline constexpr auto case_insensitive = detail::case_insensitive{};
// Obtains enum value from integer value.
// Returns optional with enum value.
template <typename E>
[[nodiscard]] constexpr auto enum_cast(underlying_type_t<E> value) noexcept -> detail::enable_if_t<E, optional<std::decay_t<E>>> {
using D = std::decay_t<E>;
using U = underlying_type_t<D>;
if constexpr (detail::count_v<D> == 0) {
return {}; // Empty enum.
} else if constexpr (detail::is_sparse_v<D>) {
if constexpr (detail::is_flags_v<D>) {
constexpr auto count = detail::count_v<D>;
auto check_value = U{0};
for (std::size_t i = 0; i < count; ++i) {
if (const auto v = static_cast<U>(enum_value<D>(i)); (value & v) != 0) {
check_value |= v;
}
}
if (check_value != 0 && check_value == value) {
return static_cast<D>(value);
}
return {}; // Invalid value or out of range.
} else {
return detail::constexpr_switch<&detail::values_v<D>, detail::case_call_t::value>(
[](D v) { return optional<D>{v}; },
static_cast<D>(value),
detail::default_result_type_lambda<optional<D>>);
}
} else {
constexpr auto min = detail::min_v<D>;
constexpr auto max = detail::is_flags_v<D> ? detail::values_ors<D>() : detail::max_v<D>;
if (value >= min && value <= max) {
return static_cast<D>(value);
}
return {}; // Invalid value or out of range.
}
}
// Obtains enum value from name.
// Returns optional with enum value.
template <typename E, typename BinaryPredicate = std::equal_to<>>
[[nodiscard]] constexpr auto enum_cast(string_view value, [[maybe_unused]] BinaryPredicate&& p = {}) noexcept(detail::is_nothrow_invocable<BinaryPredicate>()) -> detail::enable_if_t<E, optional<std::decay_t<E>>, BinaryPredicate> {
static_assert(std::is_invocable_r_v<bool, BinaryPredicate, char, char>, "magic_enum::enum_cast requires bool(char, char) invocable predicate.");
using D = std::decay_t<E>;
using U = underlying_type_t<D>;
if constexpr (detail::count_v<D> == 0) {
return {}; // Empty enum.
} else if constexpr (detail::is_flags_v<D>) {
auto result = U{0};
while (!value.empty()) {
const auto d = detail::find(value, '|');
const auto s = (d == string_view::npos) ? value : value.substr(0, d);
auto f = U{0};
for (std::size_t i = 0; i < detail::count_v<D>; ++i) {
if (detail::cmp_equal(s, detail::names_v<D>[i], p)) {
f = static_cast<U>(enum_value<D>(i));
result |= f;
break;
}
}
if (f == U{0}) {
return {}; // Invalid value or out of range.
}
value.remove_prefix((d == string_view::npos) ? value.size() : d + 1);
}
if (result != U{0}) {
return static_cast<D>(result);
}
return {}; // Invalid value or out of range.
} else if constexpr (detail::count_v<D> > 0) {
if constexpr (detail::is_default_predicate<BinaryPredicate>()) {
return detail::constexpr_switch<&detail::names_v<D>, detail::case_call_t::index>(
[](std::size_t i) { return optional<D>{detail::values_v<D>[i]}; },
value,
detail::default_result_type_lambda<optional<D>>,
[&p](string_view lhs, string_view rhs) { return detail::cmp_equal(lhs, rhs, p); });
} else {
for (std::size_t i = 0; i < detail::count_v<D>; ++i) {
if (detail::cmp_equal(value, detail::names_v<D>[i], p)) {
return enum_value<D>(i);
}
}
return {}; // Invalid value or out of range.
}
}
}
// Checks whether enum contains enumerator with such enum value.
template <typename E>
[[nodiscard]] constexpr auto enum_contains(E value) noexcept -> detail::enable_if_t<E, bool> {
using D = std::decay_t<E>;
using U = underlying_type_t<D>;
return static_cast<bool>(enum_cast<D>(static_cast<U>(value)));
}
// Checks whether enum contains enumerator with such integer value.
template <typename E>
[[nodiscard]] constexpr auto enum_contains(underlying_type_t<E> value) noexcept -> detail::enable_if_t<E, bool> {
using D = std::decay_t<E>;
return static_cast<bool>(enum_cast<D>(value));
}
// Checks whether enum contains enumerator with such name.
template <typename E, typename BinaryPredicate = std::equal_to<>>
[[nodiscard]] constexpr auto enum_contains(string_view value, BinaryPredicate&& p = {}) noexcept(detail::is_nothrow_invocable<BinaryPredicate>()) -> detail::enable_if_t<E, bool, BinaryPredicate> {
static_assert(std::is_invocable_r_v<bool, BinaryPredicate, char, char>, "magic_enum::enum_contains requires bool(char, char) invocable predicate.");
using D = std::decay_t<E>;
return static_cast<bool>(enum_cast<D>(value, std::forward<BinaryPredicate>(p)));
}
template <typename Result = void, typename E, typename Lambda>
constexpr auto enum_switch(Lambda&& lambda, E value) -> detail::enable_if_t<E, Result> {
using D = std::decay_t<E>;
return detail::constexpr_switch<&detail::values_v<D>, detail::case_call_t::value>(
std::forward<Lambda>(lambda),
value,
detail::default_result_type_lambda<Result>);
}
template <typename Result, typename E, typename Lambda>
constexpr auto enum_switch(Lambda&& lambda, E value, Result&& result) -> detail::enable_if_t<E, Result> {
using D = std::decay_t<E>;
return detail::constexpr_switch<&detail::values_v<D>, detail::case_call_t::value>(
std::forward<Lambda>(lambda),
value,
[&result] { return std::forward<Result>(result); });
}
template <typename E, typename Result = void, typename BinaryPredicate = std::equal_to<>, typename Lambda>
constexpr auto enum_switch(Lambda&& lambda, string_view name, BinaryPredicate&& p = {}) -> detail::enable_if_t<E, Result, BinaryPredicate> {
static_assert(std::is_invocable_r_v<bool, BinaryPredicate, char, char>, "magic_enum::enum_switch requires bool(char, char) invocable predicate.");
using D = std::decay_t<E>;
if (const auto v = enum_cast<D>(name, std::forward<BinaryPredicate>(p))) {
return enum_switch<Result, D>(std::forward<Lambda>(lambda), *v);
}
return detail::default_result_type_lambda<Result>();
}
template <typename E, typename Result, typename BinaryPredicate = std::equal_to<>, typename Lambda>
constexpr auto enum_switch(Lambda&& lambda, string_view name, Result&& result, BinaryPredicate&& p = {}) -> detail::enable_if_t<E, Result, BinaryPredicate> {
static_assert(std::is_invocable_r_v<bool, BinaryPredicate, char, char>, "magic_enum::enum_switch requires bool(char, char) invocable predicate.");
using D = std::decay_t<E>;
if (const auto v = enum_cast<D>(name, std::forward<BinaryPredicate>(p))) {
return enum_switch<Result, D>(std::forward<Lambda>(lambda), *v, std::forward<Result>(result));
}
return std::forward<Result>(result);
}
template <typename E, typename Result = void, typename Lambda>
constexpr auto enum_switch(Lambda&& lambda, underlying_type_t<E> value) -> detail::enable_if_t<E, Result> {
using D = std::decay_t<E>;
if (const auto v = enum_cast<D>(value)) {
return enum_switch<Result, D>(std::forward<Lambda>(lambda), *v);
}
return detail::default_result_type_lambda<Result>();
}
template <typename E, typename Result, typename Lambda>
constexpr auto enum_switch(Lambda&& lambda, underlying_type_t<E> value, Result&& result) -> detail::enable_if_t<E, Result> {
using D = std::decay_t<E>;
if (const auto v = enum_cast<D>(value)) {
return enum_switch<Result, D>(std::forward<Lambda>(lambda), *v, std::forward<Result>(result));
}
return std::forward<Result>(result);
}
template <typename E, typename Lambda>
constexpr auto enum_for_each(Lambda&& lambda) {
using D = std::decay_t<E>;
static_assert(std::is_enum_v<D>, "magic_enum::enum_for_each requires enum type.");
return detail::for_each<D>(std::forward<Lambda>(lambda), std::make_index_sequence<detail::count_v<D>>{});
}
namespace ostream_operators {
template <typename Char, typename Traits, typename E, detail::enable_if_t<E, int> = 0>
std::basic_ostream<Char, Traits>& operator<<(std::basic_ostream<Char, Traits>& os, E value) {
using D = std::decay_t<E>;
using U = underlying_type_t<D>;
if constexpr (detail::supported<D>::value) {
if (const auto name = enum_flags_name<D>(value); !name.empty()) {
for (const auto c : name) {
os.put(c);
}
return os;
}
}
return (os << static_cast<U>(value));
}
template <typename Char, typename Traits, typename E, detail::enable_if_t<E, int> = 0>
std::basic_ostream<Char, Traits>& operator<<(std::basic_ostream<Char, Traits>& os, optional<E> value) {
return value ? (os << *value) : os;
}
} // namespace magic_enum::ostream_operators
namespace istream_operators {
template <typename Char, typename Traits, typename E, detail::enable_if_t<E, int> = 0>
std::basic_istream<Char, Traits>& operator>>(std::basic_istream<Char, Traits>& is, E& value) {
using D = std::decay_t<E>;
std::basic_string<Char, Traits> s;
is >> s;
if (const auto v = enum_cast<D>(s)) {
value = *v;
} else {
is.setstate(std::basic_ios<Char>::failbit);
}
return is;
}
} // namespace magic_enum::istream_operators
namespace iostream_operators {
using namespace ostream_operators;
using namespace istream_operators;
} // namespace magic_enum::iostream_operators
namespace bitwise_operators {
template <typename E, detail::enable_if_t<E, int> = 0>
constexpr E operator~(E rhs) noexcept {
return static_cast<E>(~static_cast<underlying_type_t<E>>(rhs));
}
template <typename E, detail::enable_if_t<E, int> = 0>
constexpr E operator|(E lhs, E rhs) noexcept {
return static_cast<E>(static_cast<underlying_type_t<E>>(lhs) | static_cast<underlying_type_t<E>>(rhs));
}
template <typename E, detail::enable_if_t<E, int> = 0>
constexpr E operator&(E lhs, E rhs) noexcept {
return static_cast<E>(static_cast<underlying_type_t<E>>(lhs) & static_cast<underlying_type_t<E>>(rhs));
}
template <typename E, detail::enable_if_t<E, int> = 0>
constexpr E operator^(E lhs, E rhs) noexcept {
return static_cast<E>(static_cast<underlying_type_t<E>>(lhs) ^ static_cast<underlying_type_t<E>>(rhs));
}
template <typename E, detail::enable_if_t<E, int> = 0>
constexpr E& operator|=(E& lhs, E rhs) noexcept {
return lhs = (lhs | rhs);
}
template <typename E, detail::enable_if_t<E, int> = 0>
constexpr E& operator&=(E& lhs, E rhs) noexcept {
return lhs = (lhs & rhs);
}
template <typename E, detail::enable_if_t<E, int> = 0>
constexpr E& operator^=(E& lhs, E rhs) noexcept {
return lhs = (lhs ^ rhs);
}
} // namespace magic_enum::bitwise_operators
} // namespace magic_enum
#if defined(__clang__)
# pragma clang diagnostic pop
#elif defined(__GNUC__)
# pragma GCC diagnostic pop
#elif defined(_MSC_VER)
# pragma warning(pop)
#endif
#endif // NEARGYE_MAGIC_ENUM_HPP